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The inevitable rise of the UAV
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Few facts:
 The number of UAVs will skyrocket

from few hundreds in 2015 to 
230,000 in 2035

 Different types of aerial 
objects/systems, LOS, BLOS

 Includes drones, LAP, HAP, 
balloons, quadcopters, etc

Facebook Project AquilaGoogle Project LOON

OneWeb LEO constellation: 648 low-
weight, low orbit and low latency
satellites positioned around 750 miles
above Earth …+ SpaceX from E. Musk

Matternet



 Can be a small plane, balloon or drone
 High altitude platform (HAP) above 15 km, or Low altitude platform

(LAP) between 200 m to 6 km
 Proposals from Facebook, Google, spaceX to connect the unconnected

 Frequency bands for HAPs: 38-39.5GHz (global), 21.4-22 GHz
and 24.25-27.5GHz (region-specific)

 Remotely controlled or pre-programmed flight path
 Control and non-payload communication (CNPC) systems
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Unmanned Aerial Vehicles



 Applications
 Communications, disaster management, search and rescue,

security, control, agriculture, IoT, etc
 Covering hotspots
+ 1000x more

 Advantages
 Adjustable altitude
 Potential Mobility 
 Low infrastructure low cost 
 Limited available energy for Drones

 Also, many challenges
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Countless Applications

disaster

Coverage/capacity

V2V

Smarter
mobility

VR

Agriculture
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Challenges

Deployment 

Path planning/mobility

Energy efficiency  

Channel modeling 

Interference 

Handover and 
moving cells

Security and privacy
Resource 

management



Wireless Back-/Fronthauling
 UAV-to-UAV communication required for coordination, interference

mitigation, relaying, routing in the air, etc.
 Satellite and WiFi considered as candidate technologies for providing

wireless backhauling depending on latency-bandwidth requirements
 Satellite backhauling brings the advantage of unlimited coverage

offering the possibility of connecting the aerial network for any
distance
 However, the latency introduced by the satellite links (GEO) may affect

some real time services such as voice and real-time video.
 To avoid satellite delays and the cost, WiFi links can be used albeit

reduced coverage and capacity (doubtful QoS guarantees..)
Recent interest in Free Space Optics

 License free PtP narrow beams
 But tackle rain, fog and cloud attenuations
 Multi-connectivity to the rescue..? 7

Backhaul
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Tools Usefuls for UAVs

5G+5G+

Physics
• Mean field

• Random graphEconomics
• Matching theory

• Pricing

Game theory (GT) and learning 
• Decision making

• Resource management
• Clustering

• Supervised, non-supervised learning

Control Theory
• Lyapunov
• Consensus

Stochastic geometry
• BS/UE location

Stochastic optimization
• CSI/QSI uncertainties

Random matrix theory
• Asymptotics 

Transport Theory
• Association

• Mobility

In this tutorial, we will (briefly) touch on 
GT, optimal transport, and learning
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Part I –
Air-to Ground 

Channel Modeling 
for UAVs
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Air-to-Ground AtG Channel Model
 Radio propagation in AtG channel differs from terrestrial

propagation models
 Typically radio waves in AtG channel travel freely without obstacles

for large distances before reaching the urban layer of man-made
structures.

 UAV-ground channels typically include: 
 Line-of-sight (LOS) and NLOS links 
 A number of multi-path components (MPC) due to reflection, scattering, and 

diffraction by mountains, ground surface, foliage

 Common models define a LOS probability 
between UAV and ground user that depends on:

 Environment (suburban, urban, dense urban)
 Height (h) and density of the buildings (building/km2)
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Air-to-Ground Channel Model
 Received signals include:

 Line of sight (LOS): strong signal (G1)
 Non-line of sight (NLOS): strong reflection (G2) or fading (G3)

 Each group with a specific probability and excessive loss
 Dominant components

 LOS links exist with probability P and NLOS links exist with 
probability 1-P

 Consider LOS/NLOS separately with different path loss values 
Excessive path loss

samples
histogram
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Air-to-Ground Channel Model
 Model by Al-Hourani et al.
 Buildings and environment impact the propagation 

 Distribution of buildings’ heights:

 Suburban
 Urban 
 Dense urban
 Highrise urban

A scale parameter depends 
on environment according 

to a Rayleigh pdf
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Ray Tracing Simulation
 Allows the prediction of signal strength in an accurate 

manner 
 Based on a simulation of actual physical wave 

propagation process
 Can consider different ray types: Direct, Reflected and 

Diffracted rays

 Requires buildings database 

 3D predictions 
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Ray Tracing Simulation 
 Propagation Group Occurrence Probability, obtained at 

frequency = 2 GHz for an urban environment
 Group 1: LOS
 Group 2: NLOS

Example of a group occurrence curve fitting for two groups

 Occurence probability
of a certain propagation
group at a certain angle



Parameter depends on 
environment

Back to LOS Probability
 In urban environments, the LOS probability is given as:
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ratio of built-up land area to the total land area 
mean number of buildings per

unit area (buildings/km2 )





Antenna height
…For large values of h, P(LoS) is a
continuous function of θ and environment
parameters see next slide
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LOS Probability approximation
 Probability of having LOS link:

 Trend approximated to a simple modified Sigmoid function (S-
curve) 

 Increasing LOS probability 
by increasing elevation angle or 

UAV’s altitude

B and C: constants that depend
on the environment
θ: Elevation angle
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Shadow Fading
 Modeling shadow fading

Received signal 
power

Shadow fading

Gaussian 
distribution

Parameters depend 
on environment
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Ricean channel model
 Small scale fading is described by the Rician distribution

due to the presence of a strong LOS component in the
AtG channel

 Distribution of the received signal amplitude:

 Rician K factor:
 Depends on the environment
 Lower for denser environments 

LOS amplitudeAverage multipath 
component power

Bessel function

L-BandRicean K-factors = 12 dB and 27.4 dB in
C-band in the near-urban environment.

14 dB in L-band and 28.5 dB in C-band for the
suburban settings.



Way forward
 Air-to-air channel models (still lacking in literature)
 The probabilistic model may not be the best, real-

world measurements can help
 Airframe shadowing for large-sized or small-sized 

aircraft, tree/building shadowing at low altitude small 
UAV, also terrain shadowing for mountainous 
scenarios or beyond LOS conditions
 Of relevance here are the works of Matolak and NASA

 How to integrate multiple antennas, what is the most 
adequate number of elements and their location 
(MIMO or mmWave air-to-ground channels?)

19
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Part II –
Performance 

Analysis
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Drone small cells in the clouds: 
Initial insights on design and 

performance analysis



System Model

 Downlink scenario
 Drones provide coverage for a target area
 Scenarios:

 Single drone
 2 drones without interference
 2 drones with intercell interference

 Target: Meeting the minimum SINR
requirement on the ground

22



Main Goals

 Determining the optimal altitude of drones
 Leading to maximum coverage
 Full coverage using minimum transmit power for the drones

 Optimal deployment of two interfering drones
 Distance between the drones?
 Altitudes?

 Highlighting tradeoffs while deploying drones
 Interference, coverage, transmit power

23



Impact of Drone’s Altitude 

 Higher altitude: Higher path loss vs. higher LOS proba.
 Lower altitude: Lower path loss vs. more NLOS
 Altitude and flight constraints

 Higher and lower altitudes are bounded

24

What is 
the Optimal 

Altitude? 



Single Drone

 Minimize transmit power via an optimal altitude
 Path loss as a function of elevation angle:

25

Environmental parameters 

Additional  loss for NLoS

Optimal altitude 



Optimal Altitude 

 Optimal altitude depends on the area size (Rc)
 Increasing drone’s altitude to service larger areas
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@Low-altitude: high shadowing
+ low LOS probabilitycoverage radius decreases

@ high-altitude: high LOS probability but PL
Increases –> Coverage decreases

E.g.; optimal altitude for providing 500m coverage
radius while consuming min. tx power is 310 meters

Altitude increases w/ coverage radius



Two Drones

 Given a desired geographical area:
 Maximize the total coverage area
 What is the distance between drones?
 What is their altitude?

27

Total coverageDistance between 
drones



No Interference Case
 Deploying each drone at its optimal altitude
 Packing the coverage areas inside the target area
 While keeping the distance between drones as far as

possible, but inside the target area

28

Maximum coverage
range of each drone

Total coverage



Two Interfering Drones
 Consider a rectangular geographical area
 High distance between drones: covering undesired area
 Small distance between drones: high interference

29
• No coverage in between due to the interference

• Drones should not be placed too close

• 300 meter altitude
• 1100 meter separation



Results

 Bounded target geographical area
 Existence of optimal drones’ separation distance for

maximum coverage

30

At high drone distance, although separated,
coverage ratio is low (undesired)

Likewise, if too close interference increases.

optimal separation distance exists!
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Unmanned Aerial Vehicle with 
Underlaid Device-to-Device 

Communications: Performance and 
Tradeoffs



System Model

 Downlink Scenario: UAV coexists with a device-to-device (D2D)  
network

 Two types of users: downlink users (DU) and D2D
 UAV provides service for downlink users
 Interference between UAV and D2D transmitters
 Static and Mobile UAV Cases

32



UAV and D2D: Assumptions

 Users (DU and D2D) distributed based on Poisson point  
process (PPP)
 Number of users follows Poisson distribution, but uniformly 

distributed over the area
 The number of points in a bounded area has a Poisson 

distribution with mean e.g. λ×A or λ×B

 Underlay D2D communications:
use existing licensed spectrum

 Can we analyze the performance
tradeoffs for UAV deployment

33



 Derive the average coverage probability and sum-rate
expressions
 Finding the relationship between UAV parameters (altitude, 

etc.) and rate/coverage
 Finding some fundamental performance tradeoffs

What is the optimal altitude of the UAV that maximizes 
the coverage and rate?
 Fundamental tradeoffs between DU and D2D users

How to optimize coverage using UAV mobility ?

Main Objectives

34



 Coverage probability for downlink users (DUs)

 Coverage probability for D2D users

 Average rates

Performance Evaluation Metrics

35

SINRSINR ThresholdPolar coordinates



Static UAV: Analytical Results

 D2D Coverage Probability

 DU Coverage Probability

36Interference from D2D links

UAV 
transmit 

power

D2D 
transmit

power

UAV-D2D
distance

Distance
Between

D2D pairs

D2D
density

LoS
probability



 Number of D2Ds
 Impacts interference generated at the DUs

 Distance between each D2D pair
 UAV’s location and altitude

 Impacts air-to-ground channel 
 Transmit powers of D2D and UAV 

 Directly affect the coverage probabilities
 SINR threshold
 Overall, we have a tractable expression to analyze UAV

coverage

Key parameters

37



Results: Static UAV
 Optimal altitude for DU maximum coverage

 LoS and NLoS tradeoff

 Impact of altitude on D2D coverage probability
 UAV is an interference source for D2D

38

Optimal



Results: Static UAV
 Average sum rate vs. altitude

 Considering DU and D2D rates
 Depends on the distance between each D2D pair ሺ𝑑଴ሻ

39

The lower is 𝑑଴ the higher
is the sum-rate



Mobile UAV
 UAV moves over the target area
 Transmits at given geographical locations: “stop points”

 Goal: satisfy DUs coverage requirements by covering
the entire area

 Analyze the impact of UAV’s mobility on the outage
probability of D2D links
 Considering the spatial correlation in D2D communications

Question: What is the minimum number of stop points
(delay)? 40



Mobile UAV
 Minimum number of stop points

 Depends on: UAV altitude, D2D density, size of area,
coverage constraint

 Moving the UAV to provide complete coverage
for the area of interest
 Using optimal circle covering approach
 Full coverage with minimum

number of circles

41



Results: Mobile UAV
 Maximum coverage radius vs D2D density

 Higher number of D2Ds: higher interference
 Decreasing coverage radius!

42



Results: Mobile UAV
 Number of stop points vs. D2D density

 Higher number of D2Ds: higher interference
 Increasing number of stop points!

43



Results: Mobile UAV
 Altitude and number of stop points

 : target DU coverage requirement
 Altitude impacts coverage range and thus number of stop

points

44

Higher coverage requires
more stopping points



Results: Mobile UAV
 Coverage-delay tradeoff

 Higher number of stop points:
 Better coverage performance for DUs
 Leads to a higher delay
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Results: Mobile UAV
 UAV affects the D2D outage

 No UAV: only other D2Ds create interference
 With UAV: UAV+ other D2Ds are interference sources

 Moving UAVs leads to higher average outage probability for
D2D network

46
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Part III – Optimal 
Deployment



 Where and when to deploy UAV-BSs?
 What metrics to optimize (long term vs. short term)?
 How to develop wireless-aware path planning mechanisms?

Optimal Deployment and Mobility

48

UAV Base Stations (LAPs) Terrestrial Base Stations
• Deployment is three-

dimensional
• Deployment is two-

dimensional (with small 
exceptions)

• Short-term, frequently 
changing deployments

• Mostly long-term,
permanent deployments

• Mostly unrestricted locations • Few, select locations
• Mobility dimension • Fixed and static
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Deployment strategies of multiple
UAVs for optimal wireless coverage



System Model

 Downlink communications

 Using directional antennas for UAVs

 Interference between all UAVs

 Circular target area

 Meeting the minimum SINR
requirement on the ground

50



 Derive the coverage probability and coverage range of 
each UAV

 Maximize the coverage performance by efficient 
deployment of multiple UAVs

 Adjust UAVs’ altitude based on antenna beamwidth

 Avoid overlapping coverage to avoid interference

Main Objectives

51



 Considering shadowing effect in LoS and NLoS links
,

Downlink Coverage Probability 

52

Received signal power

Path loss

3 dB antenna gainQ function



 Coverage range of each UAV: 

 M identical UAVs
 Total coverage is maximized
 No overlap between UAVs’ coverage areas

Multiple-UAVs deployment

53



 Big circle: area of interest which needs to be covered
 Each small circle: Coverage region of  each UAV   
Maximizing the packing density is equivalent  to 
maximizing total coverage

Approach: Circle Packing Problem

54

The optimal 
packing of 10 

circles in a circle

The optimal packing 
of 15 circles in a 

square

The optimal packing 
of 6 circles in a 
right isosceles 

triangle



 Coverage radius vs. number of UAVs (circle packing):

 Upper bound on the coverage radius: 

Results 
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 Altitude versus number of UAVs
 More UAVs:

 Less coverage radius per UAV is required
 Reduce UAVs’ altitudes to avoid interference  (overlapping)

Results 
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 Meeting a total coverage requirement 
 What is the minimum number of UAVs?
 Depends on the size of the area
 Choosing appropriate number of UAVs based on coverage 

requirement and size of target area

Results 

57



 Total coverage and coverage lifetime tradeoff
 Increasing number of UAVs:

 Transmit power per UAV can be reduced
 Higher coverage lifetime

Results 

58
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Cooperative deployment and mobility 
of UAVs for optimizing rate-delay 

tradeoffs



Cooperative UAV Deployment

Task 3Task 2 Task 1

Task 4

 Given a number of tasks in an area and some autonomous 
agents (e.g., UAVs)
 How to dispatch the agents to service the tasks?
 Can the agents make their own decisions on servicing the tasks?
 Almost no work considered the problem in the context of a 

wireless/communication network
 Tasks are queues of data with no direct connectivity

Task 6Task 5

60
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 The problem is well studied but…
 Most approaches are 

 Robotics-oriented
 Mainly in military applications (tasks are targets)
 Other  related problems (the repairman problem, dynamic vehicle 

problem… )
 Software engineering (autonomous agents)
 The tasks are usually considered as passive entities

 Almost no work considered the problem in the context of a 
wireless/communication network
 With next generation self-organizing networks this problem becomes quite 

relevant
 Nature of wireless networks (channel, traffic, etc)
 Quality of service

Cooperative UAV Deployment
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Agents in Wireless Networks
 Given a number of tasks in an area

 Consider each task as a M/D/1 queuing system generating 
packets with a Poisson arrival

 Each task i has an arrival rate λi

 The network operator, requires..
 Data collection from the tasks
 Wireless transmission of the data to a central receiver

 The network owns a number of autonomous agents 
that need to
 Decide on which tasks to service
 Collect the data and transmit it taking into account

 The amount of data collected
 The delay



Task 4

Task 3

Task 5

Task 2

UAV Agents in Wireless Networks

Central Receiver
(Command Center)

Task 1

 How will such groups form?
 A cooperative game between Tasks and Agents

 Solution using notions from operations research, wireless 
networks, and  queuing theory

Collect data from task  
5 and transmit it

Collect data from task 
3 and transmit it

Collect data from task 
4 and transmit it

Collect Data from 
Task 1 and transmit it

Collect Data from 
Task 2 and transmit it

63
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Problem Formulation
 Coalitional game where

 The players are the tasks and UAVs, hence, the player set N is the 
set of all tasks and UAVs
 Denote M the set of UAVs and T the set of tasks, N = M U T

 Each coalition S consists of a number UAVs servicing a number of 
tasks t

 A UAV can be either
 A collector: more collectors means smaller service time, less 

delay
 Each collector i has a link transmission capacity µi
 For a number of collectors G servicing a task i in a coalition S the 

total link transmission capacity is

 A relay: more relay means better effective throughput (less outage 
probability)
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Problem Statement
 Each coalition S can be seen as a polling system 

with exhaustive strategy and switchover times
 Polling systems are ubiquitous in computer systems
 The main idea is that a server is servicing multiple 

queues (sequentially or not)
 Exhaustive implies the server collects all the available data 

from a queue before moving to the next
 Switchover times are the time to move from one task to 

the other
 In this context, each coalition S consists of

 A number of collectors acting as the polling system 
server 

 The tasks are the queues of the polling system
 Switchover time is the travel time from one task to the 

next
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Performance metrics - Delay
 For a polling system, it is difficult to have an exact 

expression for delays, but, we can use the pseudo-
conservation law for a coalition S

 Stability of coalition S (polling system) requires ρS < 1
 The total switchover time θS depends on the sequence in 

which the tasks are visited
 Nearest neighbor solution to the travelling salesman problem

Utilization factor ρi: 
ratio of arrival rate to link 
transmission capacity of 

collectors for a task i

Total switchover time 
θS of coalition S

Sum of utilization 
factors over all tasks 
in S
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Performance metrics - Throughput
 For each coalition, the total effective throughput 

from the data collected and transmitted is given by

 Pri,BS is the outage probability for wireless transmission 
from task i to the central BS
 Improved by having UAVs working as relays on the link 

between the collectors on task i and the BS

 For each coalition, the UAVs and tasks are given a 
reward from the network operator depending on 
the throughput-delay trade off achieved
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Utility function
 Given the throughput and delay previously defined, for 

each coalition S we propose the following utility

 β is a tradeoff parameter that represents the weight that a coalition 
puts on the throughtput and delay

 The utility is based on the concept of power which is a ratio  
between effective throughput and delay

 Utility is transferable: the total revenue achieved by coalition S 
with δ the revenue per unit power

 Given the players set N and the utility v the question is
 We use the framework of hedonic coalition formation games to 

solve the problem
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Hedonic Coalition Formation
 In our game we can say that
 A UAV prefers a coalition S1 over a coalition S2 if

 The UAV is not the only UAV in its current coalition S2 and
 The payoff he receives in S1 is higher than S2, and he had not 

visited this  coalition before (history tracking).

 xi
S is the payoff received by player i from the division of the utility 

(we consider equal division for this work) 
 h(i) history set
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Hedonic Coalition Formation
 A task prefers a coalition S1 over a coalition S2 if

 The payoff he receives in S1 is higher than S2, and he had not 
visited this  coalition before (history tracking).

 By using these preferences we can derive an algorithm 
form coalitions between the UAVs and the tasks

 Having defined the preferences, the next question is
 How to form the coalitions?
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Coalition Formation Algorithm
 Coalitions form and break as a result of 

selfish decisions by the players (agents and 
tasks)

 Switch rule

 Every player switches its current coalition to 
join another, if and only if the new coalition is 
strictly preferred using the defined preferences.
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Coalition formation algorithm
Initial Network State: 

Non-cooperative network

Task discovery: 
The central BS informs the UAVs

of the tasks in the area

Each player ( UAV or task) surveys
nearby coalitions for possible switch 

Each player takes the switch 
Decision that maximizes its payoff

Sequential switch operations until convergence

Final partition: Continuous data 
collection and transmission by the UAVs

The final 
partition is 

Nash-stable, 
no player has 

an incentive to 
unilaterally 
change its 
coalition



73

Simulation results (1)
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Simulation results (2)
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Mobile UAVs for Energy-Efficient 
Internet of Things Communications



System Model

 Uplink IoT communications 

 Meeting SINR requirements of IoT devices

 Periodic versus Probabilistic IoT activation models 

 UAVs update their locations based on devices activation 
patterns 

76



IoT devices

 Battery limited
 Typically unable to transmit over a long distance due to their 

energy constraints
 UAVs can dynamically move towards IoT devices, collect the 

IoT data  moving IoT aggregators

 Many IoT devicesinterference issue

 IoT activations:
 Periodic: weather monitoring and smart grids applications
 Probabilistic: health monitoring and smart traffic control 

applications.
77



 How to enable reliable and energy-efficient uplink
communications in a large-scale IoT using UAVs?

 What are the joint optimal 3D UAVs’ locations, device-
UAV associations and uplink power control?

 Need for a framework for updating UAVs locations in
time-varying networks:

1) Update times: shows how frequently UAVs update their
locations

2) UAV trajectories

Main Objectives

78



 Joint UAVs’ locations, associations, and power
optimization

Problem Formulation

79

IoT transmit 
power

UAV j 
location

Set of active 
IoT devices

SINR 
Constraint

Channel 
gain

Association 
matrix



 Decompose the problem into two subproblems
 Solve the problem for fixed association 
 Solve the problem for fixed UAVs’ locations

 Consider interference and non-interference scenarios separately

General Approach

80



 UAVs’ locations and device-UAV association
 An example, given the locations of active IoT devices

Results 

81
 5 UAVs serving 100 active IoT devices uniformly distributed over the area



 Reliability
 Probability that active devices are successfully served by 

UAVs
 Significant enhancement by dynamically moving UAVs

Results 

82



 Total transmit power vs. number of UAVs
 Compared with stationary aerial base stations

Results 
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• 5% power reduction 
vs. baseline on the 

average



 Total transmit power vs. number of orthogonal channels 
for meeting SINR requirements
 More channels: 

 less interference and hence, lower transmit power needed to meet 
SINR requirements of each device 

Results 
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• 100 devices served by 5 UAVs

• By increasing the number of channels
from 25 to 50, the total transmit power
of devices can be reduced by 68%



 Time varying IoT network
 UAVs dynamically update their locations based on IoT

activations
 Probabilistic activation during [0,T]:

 Beta distribution with parameters 

 Periodic activation:
 Each device has a specific activation period 

IoT activation models
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 Time instance at which the UAVs’ locations and 
associations are updated

 Depends on the activation process of IoT devices

 Number of IoT devices
 For higher number of devices more updates are needed!

 Energy of the UAVs
 More updates requires more mobility

UAVs’ update times 
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 For probabilistic activation case
 Choosing appropriate update times based on

number of active devices

UAVs’ update times 
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Regularized incomplete beta 
function

Average number of 
active devices

Total number of 
devices



 Number of devices which must be served vs. update time
 More frequent updates: 

 More devices can be served
 Less active (unserved) devices remain

Results 
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For a higher number of update times or
equivalently shorter time period between
consecutive updates, the average number
of devices that need to transmit their data
decreases



 Update times for different number of active devices
 Depends on the activation process (beta distribution parameters)
 Ensuring that the average number of active devices is less than a

Results 
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Average number of 
active devices

• To achieve lower value of a, updates need to be done more frequently so as the time 
interval between updates decreases. 

• For e.g., to meet a = 100, 75, and 50, the 5th update must occur at t = 0.41, 0.55, and 1



 UAVs update their locations according to the activity of 
the IoT devices

 How to optimally move UAVs between the initial and 
the new sets of locations?
 Mobility with minimum total energy consumption
 Energy consumption of each UAV depends on travel distance, 

UAV’s speed and power consumption as function of speed

UAVs’ mobility 

90

Travel time



 Which UAV goes where?

UAVs’ mobility 

91Update time t1Update time t2

New set of UAVs’ 
locations

Initial set of UAVs’ 
locations

Energy constraint 
of each UAV

Can be 
transformed 

into an 
assignment 

problem  

Transportation matrix

Energy from location k to l



 Update times impact the UAVs’ energy consumption for 
mobility
 More updatesUAVs need to spend more energy on mobility 

Results 

92

• by increasing the number of updates from 3 to 6, the energy consumption of
UAVs increases by factor of 1.9
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Part IV – Resource 
Management



 Let’s first take a look on the impact of hover time

Resource management

94

UAV Networks Terrestrial Networks
• Spectrum is scarce • Spectrum is scarce
• Inherent ability for LoS

communication can facilitate
high-frequency (mmW)

• Difficulty to maintain 
LoS poses challenges at 
high frequencies

• Elaborate and stringent 
energy constraints and models 

• Well-defined energy 
constraints and models 

• Varying cell association • Static association
• Hover and flight time 

constraints
• No timing constraints, BS 

always there
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Optimal Transport Theory for Hover 
Time Optimization



Flight Time Constraints?

 UAVs have limited on-board batteries
 Cannot fly for a long time

 Flight regulations and weather conditions
 No-fly time and no-fly zones
 Wind and rain effects

 Mobility based on demands
 Cannot stay at one location for a long time

 Flight time constraints must be taken into account:
 Minimizing flight time while meeting the demands
 Optimizing the service performance under flight time constraints 
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System Model

 M stationary UAVs serve N users
 Users’ distribution:

 2D spatial distribution of users
 Determines how likely a user is present

 M partitions each serviced by one UAV
 Hover time: Time duration that a UAV spends over a given area
 Channel model adopted is the one explained earlire
 Goal: finding optimal cell partitions and associations

 Based on users’ distribution, hover times, and UAVs’ locations

 Two scenarios:
 Maximizing total service data given the maximum hover times (Scenario 1)
 Minimizing average hover time while meeting load requirements (Scenario 2)
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Problem Formulation (Scenario 1)

 Total bandwidth for UAV i :
 Hover time of UAV i :
 Effective data transmission time:
 Control time which is not used for transmission:

 Portion of hover time which is not used for data transmission
 Used for processing, computations, and control signaling.
 Is a function of the average number of users

 Data transmitted to a user located at (x,y) served by UAV i :
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Scenario 1
 Time and bandwidth are the resources
 We consider some level of fairness in resource allocation:

 Maximizing average total data service by optimal partitioning:

99

Depends on hover times and
bandwidths



Approach: Optimal Transport Theory

 Moving items from a source to destination with minimum cost

 What is the best way to move piles of sand to fill up given holes of
the same total volume?

 Goal: Minimizing total transportation costs
 Where should each pile be moved?
 Our problem: transportation from users to UAVs!

100



Monge-Kantorovich Transport Problem

 Given two probability distributions

 Same amount of mass in source and destination
 What is the optimal mapping between ?

101



Back to our problem

 We have a semi-discrete optimal transport problem
 Mapping from users’ distribution (continuous) to UAVs (discrete)

 Optimal cell partitions are related to optimal transport maps

102



Finding Optimal Partitions and 
Associations 

 Finding optimal values of leads to the optimal transport map
and optimal cell partitions!

 Complete characterization of partitions is now possible
103

Kantorovich Duality Theorem:

Theorem 1:

Cost function depending 
on data service 



Finding Optimal Partitions and 
Associations 

1) F is a concave function of

2) Using gradient based method to find optimal

3) Optimal cell partitions are given by:

104

Theorem 2:

Special case: results in a weighted Voronoi diagram 



Results: Scenario 1

 We consider truncated Gaussian distribution for users
 Suitable for modeling hot spots in which users are congested

105



Results: Scenario 1

 Lower : users’ distribution is more non-uniform
 Jain’s fairness index is one when all users receive equal service

106

Average number of users in each 
partition

Fairness index for average data service



Scenario 2 

 UAV-based communications under load constraints
 Goal: minimizing the average hover

time needed for serving the users
 By finding optimal cell partitions

107

Average hover time of UAV i to 
service partition :

Transmission time Control time

: rate
Load (in bits)



Problem Formulation (Scenario 2)

 Average total hover time of UAVs:

 We will characterize the optimal solution using optimal
transport theory again

108



Optimal Partitions

 Proof idea:
 Proving the existence of solution
 Comparing optimal partitions and a non-optimal variation of those
 Then characterizing the solution

 Note: weighted Voronoi is a special case (with no control time)
109

Theorem 3: optimal cell partitions can be characterized as



Results: Scenario 2

 Average hover time vs. control time

110



Results: Scenario 2

 Hover time and bandwidth tradeoff

111
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Beyond 5G with UAVs: Foundations of a 
3D Wireless Cellular Network



System Model
 3D aerial network:
 Drone-users (drone-UEs)
 Drone base stations (drone-BSs)
 HAP drones for wireless backhaul

 Important metrics:
 Connectivity
 Latency

 Two key problems:
 3D network planning of drone-BSs

 Deployment and frequency planning 
 3D cell association for drone-UEs 113



Proposed Framework

114

3D deployment of drone-BSs 
and frequency planning: 

truncated octahedron cells

Estimating the spatial 
distribution of drone-UEs using 

machine learning tools

Optimal 3D cell association for
minimum latency of drone-UEs 
using optimal transport theory

Drone-BSs’ locations
and co-channel cells

3D spatial distribution
of drone-UEs



Network Planning of Drone-BSs
 Inspired by 2D hexagonal cells
 Hexagons covers an area without gap or overlap
 Closest to circle

 Omni-directional antenna

 How about in 3D?
Criteria:

 Full coverage with minimum number of drones 
 Closest shape to a sphere
 Tractable
 Candidates for regular 3D shapes:

 Cube, Hexagonal prism, Rhombic dodecahedron, Truncated 
octahedron

115



Results: Network Planning 
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 Number of drone-BSs needed for full coverage of space
 Different space filling polyhedra



3D Network Planning of Drone-BSs

117

 Truncated octahedron structure will provide an initial 
way to place drone-BSs
 Placing drone-BSs at centers of truncated octahedrons 

14 faces:
8 hexagons
6 squares



Deployment and Frequency Planning 
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 Theorem 1. the three-dimensional locations of drone-BSs 
are:

 Theorem 2. the feasible integer frequency reuse factors can 
be determined by:

where a, b, c are integers chosen from set {…,-2,-1, 0, 1, 2,…}

n1, n2, n3, m1, m2, and m3 are integers that
satisfy above equations

Integer frequency reuse factors: 1, 8, 27,64,…



Results: Frequency Planning
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 Integer frequency reuse factors (q): 1 and 8

 Higher q : higher SINR but requires more bandwidth



Latency-Minimal 3D Cell Association

120

 Latency in serving drone-UEs
 Transmission latency
 Backhaul latency
 Computational latency

Depend on: resources, congestion, 
and 3D cell association

Transmission Backhaul Computation
Average number of 
independent drone-

UEs in cell n

3D cell partition 

Drone-UEs’ 
distributio

n

Packet length

Bandwidth

Total number of drone-
UEs (assumed to be large) Challenging to solve



Solution Characterization 

121

 Using tools from optimal transport theory
 Finds optimal mapping between two probability measures 
 Considering a semi-discrete optimal transport problem

 Mapping drone-UEs’ distribution (continuous) to drone-BSs (discrete)
 Optimal 3D cell partitions are related to optimal transport maps

??

Steps: 
- Existence of solution by the existence an optimal map
- Comparing optimal partitions and a non-optimal variation of those
- Characterizing the solution



Solution Characterization 
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Theorem 3: the optimal 3D cell partitions are characterized by:

Note: 3D cell shapes depend on:  
- drone-UEs’ distribution, drone-BSs’ locations, backhaul rate,  
computational speed 



Results: 3D Cell Association 
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 Proposed approach vs. SINR-based association 
 Reduces latency
 Improves spectral efficiency 



Results: Latency
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 Latency increases by increasing packet size
 Transmission 
 Computation
 Backhaul

M. Mozaffari, A. Taleb Zadeh Kasgari, Walid Saad, Mehdi Bennis, 
Merouane Debbah, “Beyond 5G with UAVs: Foundations of a 3D Wireless 
Cellular Network”, https://arxiv.org/abs/1805.06532
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Caching in the Sky: Proactive Deployment 
of Cache-Enabled Unmanned Aerial 
Vehicles for Optimized Quality-of-

Experience



System Model
 Considerations:

 Users mobility
 Users’ content request
 Caching at UAVs
 UAVs’ deployment

 Transmission links
 (a) Content server->BBUs->RRHs->users
 (b) Content server->BBUs->UAV>users
 (c) Cache->UAVs->users 126



 Maximizing users’ quality of experience (QoE) using 
minimum UAVs’ transmit power

 Optimizing

 Users association 

 UAVs’ locations

 Content caching

Main Objectives

127



General Approach

 For learning and predictions, we use the neural network 

framework of echo state networks 128



 Notion of “reservoir” (random)
 Only need to train the output layer

via linear regression
 Good at dealing with time stamped data 

Echo State Networks

W in

W
x n 

y n 

W

y n1 y n 

W in W

Wout Wout Wout Woutx n1 x n 

W
W in W in W

y n2 
x n2 

u n  u n  u n1  u n2 



Echo State Networks

Step 3.

Training Process

Step 1. 

Step 2.

Usage Process
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ESN for Caching
 ESN model consists of 

 Agents: Baseband units of a CRAN
 Input: the input is the users locations and context 

information (e.g., requested videos, etc.)
 Output: the output is prediction of mobility patterns
 ESN model: This is the reservoir model, without going 

through it now, it is composed of a set of matrices that enable 
the recurrent neural network learning/predictions

 Conceptor: use of a week mobility as “pattern”

 For simulations, we use real data from BUPT and the 
Youku video website



 Average transmit power of each UAV vs. number of users
 Using proposed approach, 20% reduction in transmit power 

compared to other algorithms

Results 
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 The percentage users with satisfied QoE versus the number 
of the users

 Using UAVs leads to a significant QoE improvement!

Results 
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 Decreasing transmit powers while increasing the number 
of storage units
 UAV will directly transmit the requested contents to the users

Results 
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Liquid State Machine Learning for 
Resource Allocation in LTE-U UAVs



System Model

 Consider the downlink of an LTE-U network composed of K dual-
mode UAV-base stations and W ground WiFi access points

 The UAVs are equipped with cache storage units
 UAVs can be deployed as flying base stations with caching capabilities
 The UAV can cache a set of C popular content that can be pre-fetched from

a local cloud
 Cloud-UAV fronthaul links are licensed, wireless links

 On the licensed band, we consider an FDD mode for the downlink of
the LTE-U users, while we use a TDD mode with duty cycle for the
unlicensed band
 LTE-U transmissions will happen for a fraction of time      over the unlicensed 

band, and will be muted for the rest of the slot

 The ground WiFi access points (WAPs) use a standard CSMA/CA
136



WiFi Data Rate Model
 The WiFi saturation capacity over the unlicensed band will be:

 Tc, Ts, and Tσ represent the average time the
channel is sensed busy because of a successful transmission, during a 
collision, and the duration of an empty slot, respectively
 Computed using conventional approaches
 The WiFi network uses a standard DCF and RTS/CTS access schemes

 The per user WiFi rate will be:
137

# users Probability of 
occurrence of a transmission Successful 

transmission
probability

Average
packet

size



UAV Data Rate Model
 We use the air-to-ground channel model introduced by Hourani et al., 

in which the probability of a LoS connection depends on the ground 
environment, and, thus, the average path loss will be:

 with

 and

 The data rate on the licensed band will therefore be:

138

Fraction of licensed
band for user i Bandwidth Fronthaul power



UAV Data Rate Model
 Over the unlicensed band, the data rate of the UAV will be:

 The fronthaul UAV k-cloud rate for each associated user will be:

139

Number of
users at t Average path loss

Fraction of time for
unlicensed band



Queuing Model
 The queue length of user i at the start of slot t will be:

 The data rate will be

 Link (a) is the  UAV-user link over the licensed band
 Link (b) is the UAV-user link over the unlicensed band
 Link (c) is the cloud-UAV-user licensed band link
 Link (d) is the cloud-UAV-user unlicensed band link 140

Queue length Arrival rateData rate



Problem Formulation
 Queue stability will be used to measure the delay:

 The key goal is to solve the following resource management problem:

 Challenging problem because it includes both content predictions/caching and 
spectrum management which is non-convex and complex

 Solution? Neural networks for predictions AND resource management!
141



Liquid State Machines
 We need an algorithm that can: a) track the network over time,  b) 

store user information, and c) rapidly find the resource management 
solution
 We use spiking neural networks (SNNs) since they can capture accurate 

activation of neurons which enhance their predictive capabilities
 SNNs have two major advantages: fast real-time decoding of input 

signals that are continuous and a temporal dimension that can help a 
high volume of information for predictions

 However, general SNNs are computational complex to train
 Solution via liquid state machines (LSMs)
 LSMs are SNNs that are easy to train as they use the concept of 

reservoir computing (basically random training) to make them 
amenable to easy implementation
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LSM for Predictions
 Basic architecture of LSM

 The “liquid” is a leaky-integrate-and-fire (LIF) SNN that mimics 
exactly a biological neuron

 The input in our model is                                                         which is 
a vector that represents the users’ context information 

 The output is a request distribution vector
 The output function builds the relation between LSM state and the 

content request distribution 143



 The output function is trained in an offline manner using 
ridge regression:

 Then, the prediction of the output can be found:

 We now need to define another LSM for solving the 
resource management optimization problem

LSM for Predictions

144

LSM state 
sequence

Identity 
matrix

Learning
rate

Target
output



 The UAVs are the agents that run the LSM for resource management
 The input is a vector mk(t) of actions observed by UAV k on other 

UAVs, with each action being a user association scheme
 Using this input and one of our previous results, we can recast on 

cached content, we can recast the original optimization as a convex 
problem to choose the actions

 The output of the LSM is a vector bk(t) that provides the resource 
allocation results, with each element being the expected number of 
stable queue users:

 This is used with the output function to solve our original problem

LSM for Resource Management
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Simulation Results

 Real data from
Youku

 LSM provide very
accurate predictions
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Simulation Results
 The average number 

of stable queue users
increases with 
network size

 Caching brings about
substantial gains,
even without LSM

 LSM provides further
gains
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Simulation Results

The proposed LSM 
algorithm leverage
the power of SNNs
to substantially
reduce convergence
time (about 1/3 less
than Q-learning)
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Simulation Results

The more we can
cache, the more 
users we can serve 
with
stable queues
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Cellular-Connected UAVs over 5G: Deep 
Reinforcement Learning for Interference 

Management



System Model
 Uplink of a cellular network composed of S base stations

(BSs), Q ground users, and J cellular-connected UAVs
 UAVs must co-exist with ground users and share resource

blocks
 UAVs are assumed to be flying at a constant altitude (different

for different UAVs) and collecting data (e.g., surveillance,
sensing, etc.) that needs to be transmitted to the ground BSs
 Each UAV has a specific mission and needs to move from an 

origin to a destination while transmitting data along the way
 For ease of exposition, we consider a virtual grid that the UAVs use

for their mobility, i.e., they move along the centers of small grids
 Areas within the grid are chosen to be sufficiently small
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 The SINR for UAV j’s transmission to a ground BS s, over RB c is:

 The achievable rate for a UAV j will then be given by:

 We also consider queuing latency, using an M/D/1 model:

UAV-BS Transmission Model
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Total Interference (ground 
and air)

Bandwidth

Rician
channelUAV power

# RBs

Packet
arrivals

Data 
rate



Ground Users Data Rate Model
 For the ground users, the achievable data rate will be given by:

 Ground users can potentially be significantly affected by interference 
stemming from flying UAVs (due to the drones’ better channel 
towards the ground BSs)

 Our objectives will therefore be to answer the following key 
questions:
 How can we design a wireless-aware path planning mechanism for 

cellular-connected UAVs?
 How can the designed path plan optimize the UAVs’ mission 

goals, while minimizing impact on the ground network? 153

Total Interference
(ground and air)



Problem Formulation
 We can pose our path planning problem as follows:

154

Tradeoff between interference
to ground, delay, and path length

Each area is visited once

Maintain origin-destination

Arrive/leave same area

One BS
per UAV

SINR/power
constraints



 Problem is challenging to solve in a centralized manner, especially to 
do joint power allocation, navigation, and cell association

 Objective functions are coupled through interference => a game-
theoretic approach is appropriate!

 We formulate a dynamic game:

 The utility functions can be defined as follows:

Game-Theoretic Approach
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UAVs Stages Actions

State space: distance/orientation

Distributions Utility functions

Lagrangian conversion of centralized case



Solution Approach
 Since the game is dynamic and has a large action space, it is 

challenging to analytical characterize the subgame perfect Nash 
equilibrium (SPNE)
 Such characterization may also require full knowledge of the 

system and state, which is not very practical
 We will seek to develop a reinforcement learning (RL) algorithm 

that enables the UAVs to autonomously find the SPNE
 RL algorithm with predictive capabilities is needed to operate with 

minimal information
 Actions are time varying => need dynamic RL predictions and 

highly adaptive algorithm
 Recurrent neural networks!
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ESN for UAV
 We not only need to deal with time-stamped data, but 

also with large action sets
 We will propose a novel deep ESN architecture
 Input: the input to the first layer is the external network state 

while input to subsequent layers are previous layers
 Output: the output is estimation of utility function
 ESN model: This is the reservoir model, without going 

through it now, it is composed of a set of matrices that enable 
the RNN learning/predictions and is trained by our network 
state

 When it converges, the algorithm will find an SPNE, 
but establishing general convergence is challenging
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Simulation Results

Proposed
wireless-aware
approach
avoids causing
ground 
interference
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Simulation Results
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Simulation Results
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Simulation Results

Convergence depends on learning rate (0.01 is ideal for this case) 



Other UAV Comm. Approaches
 UAVs as backhaul (see U. Challita and W. Saad, GLOBECOM 

2017)
 More on machine learning (see M. Chen, W. Saad, et al., 

GLOBECOM 2017)
 UAVs as relay stations (see works by L .Swindelhurst et al. and 

R. Zhang et al.)
 Cyclical resource allocation with optimal deployment of UAVs 

as relays (see works by Y. Zeng and R. Zhang)
 Deployment within a cloud radio access network and related 

environments (see Yanikomeroglu et al.)
 Channel modeling, localization, tracking, public safety, and 

related ideas (see works by I. Guvenc et al.)
162
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Part V – Security



164

CPS Security of UAVs
 UAVs are essentially cyber-physical systems 

 Cyber vs. Physical: the physical world follows (typically) 
laws of nature or control-theoretic models, which have 
different constraints and time scales compared to cyber 
features

 Human-in the loop: man meets machine (UAV)
 CPS nature brings cyber and physical vulnerabilities
 As UAVs become more prevalent, they will face more 

and more security challenges
 Autonomy is both a blessing and a curse
 Let’s see an example security problem



Delivery Drones

 Drones will be used in the real-world for delivering goods 
or to deliver rescue mission items

165



Security of Delivery Drones

 Delivery drones are prone to a variety of cyber-physical 
security threats
 Cyber attacks to hack the cyber/wireless system and re-

route the drone or to jam its communication
 Commercial drones will be in the range of civilian-owned 

hunting rifles that can be used for physical attacks
 In such scenarios, humans will be in the loop!

 Attackers will likely be humans (e.g., choose a high point 
to shoot the drone or jam its link in line-of-sight)

 Vendors who own the drones will have stringent delivery 
times especially for medical delivery (framing effects!) 166



Basic System Model

 A vendor sends a delivery drone from an origin O to a 
destination D
 In an ideal world, vendor always chooses shortest path

 Presence of adversary
 Attackers can interdict the drone at several threat points 

such as high buildings or hills to cause physical or cyber 
damage

 A destroyed drone must be re-sent by the vendor, leading 
to increased delivery times and economic losses

 The system can be modeled as a graph
167



Basic System Model

 The vendor is an evader wants to minimize expected 
delivery time by choosing an optimal path

 The attacker is an interdictor who chooses a location to 
attack the drone and maximize the delivery time

 Natural zero-sum network interdiction game 168



Game Formulation

 Two-player zero-sum game in which both vendor and 
attacker want to randomize over their strategies
 Defender mixed-strategy vector
 Attacker mixed-strategy vector

 Attack at location n will be successful with probability pn

 The expected delivery time will be:

 fh(.) is a distance function
 T depends on various parameters 169



Game Formulation

 Vendor problem

 Adversary problem
 As a zero-sum game, it can be transformed into two 

linear programs that can be easily solved
 Game admits a Nash (saddle-point) equilibrium
 There may be more than one equilibrium, but they are all 

interchangeable yielding the same delivery time
 But what about the human perceptions? 170
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Expected Utility Theory

 Conventionally, the Nash equilibrium is found 
under expected utility theory (EUT) 
considerations 
 Presumes that players act rationally
 The players optimize the expected value over their mixed 

strategies, i.e.,

 Caveat: in practice, it has been empirically shown that 
when users are faced with uncertainty, they act 
irrationally
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Are humans really rational?

How to capture such irrationality?

 Example: In the 
real-world, 

security 
problems often 
involve human 
decision makers 
at both sides of 

the aisle 
(attack/defense)
 Human in 

the loop

Source: Study between Kyoto University and game theorists 
at Caltech (June 2014)



173

Prospect Theory

 Lottery example
 Risk impacts

how players weigh
certain outcome

 Uncertainty can 
lead players to deviate from the rational norms of EUT

 Subjective perception on losses/gains
 In CPS and UAV, many human players are in the loop and 

will have subjective perceptions on the various 
performance and network measures

 Solution: Prospect theory!
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Example
 The preferred choice between a pair (or more) of 

uncertain alternatives is determined by:
 Value of the alternatives (as is customary) but also..
 How those choices are stated!

 Gain Scenario: You average monthly bill is now $450 a 
month. Under our new smart system your bill will now 
show a debit of $500 a month. Also, you may choose:
 A) 50% chance of a $100 credit  if you join our new 

wireless pricing system
 B) 100% chance of a credit of $50 that will keep your bill 

the same
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Example
 Loss Scenario: Your average monthly bill is now $450 a 

month. Under our new smart system your bill will now 
show a debit of $400 a month. Also, you may choose:
 C) 50% chance of a bill for $100  if you join our system
 D) 100% chance of a bill of $50 that will keep your bill the 

same
 A) and C) are identical, while B) and D) are identical
 Prospect theory found that people will always prefer B) 

to A) and C) to D)
 A certain gain is preferred to an uncertain double gain!
 An uncertain loss is preferred to a certain, smaller loss!
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Prospect Theory

 Prospect theory
 Introduced by Kahneman and Tversky (1979)
 Won them the Nobel prize in 2002
 Cognitive psychology basis for analyzing human errors 

and deviations from rational behavior

 Two important observations:
 Weighting effect: Players can subjectively weight 

outcomes that are uncertain or risky
 Framing effect: Players may evaluate their utilities as 

gains/losses with respect to a reference point
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Illustrating the Weighting Effect

 Weighting effect
 Prelec function

 Outcomes are 
weighted 

differently
 Weighting applies 

to
probabilistic 

outcomes (e.g. 
mixed strategies)
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Prospect Theory

 With weighting, the players now optimize:

 Framing effect
 Each player will “frame” its gains/losses with 

respect to a reference point
 Losses loom larger than gains

Weighting effect, Prelec function:
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Prospect Theory

 Concave in 
gains

 Convex in 
losses

 Steeper slope 
for losses as 

opposed to gains
 Risk averse in 

gains, risk 
seeking in losses
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Prospect Theory

 Framing effects
 The following framing function has been proposed:

 Suitable applications for PT?
 When humans are making decisions (CPS with human-in-

the loop, smart grid, pricing , human hackers, security)
 UAV security is a prime example, given the impact of 

UAV performance on owners/humans



Prospect Theory in UAV

 The standard formulation does not account for the 
presence of humans in the loop that are facing 
uncertainty

 Uncertainty: perceptions of both attacker and vendor on 
the probability of successful attack (weighting effect)

 Framing: subjective perception on the delivery time 
with respect to a reference point
 Even the smallest of delays can be catastrophic 
 For rescue situations, survival is at stake
 For Amazon, reputation can be damaged
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Prospect Theory

 Subjective, PT-based utility

 The game is no longer zero-sum
 We consider max-min/min-max strategies

 Ongoing work to characterize equilibria under PT
182

Reference pointFraming function Weighting



183

Simulation results (1)

Due to the weighting
effect the vendor
will still choose 

the shortest
path despite being 

very risky (pn = 0.8)
This choice

becomes more likely
as the vendor
becomes more

irrational
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Simulation results (2)

Due to the weighting
effect, the attacker

focuses more
on nodes 5 and 8

which are
part of the shortest

path
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Simulation results (3)

Delivery time is increased by almost 10%
not accounting for time to re-load and 

re-ship
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Simulation results (4)

As  the loss 
parameter increases

the vendor exaggerates
losses and thus

starts choosing more
risky paths to

meet delivery time
which, in turn,

yields to a 
reverse effect!!!
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Conclusions
 UAVs provide with many new opportunities to 

improve wireless communications
 The Internet of Flying Things will be upcoming and 

we must be “analytically” ready
 Fundamental results on performance are needed
 Self-organization in terms of resources, network 

topology, access modes, security, etc.
 Machine learning, game theory and related techniques

 Human-in-the-loop: bounded rationality
 Ubiquitous wireless connectivity from the sky!
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Finally….
Thank You
Questions?
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