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The inevitable rise of the UAV
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Few facts:
 The number of UAVs will skyrocket

from few hundreds in 2015 to 
230,000 in 2035

 Different types of aerial 
objects/systems, LOS, BLOS

 Includes drones, LAP, HAP, 
balloons, quadcopters, etc

Facebook Project AquilaGoogle Project LOON

OneWeb LEO constellation: 648 low-
weight, low orbit and low latency
satellites positioned around 750 miles
above Earth …+ SpaceX from E. Musk

Matternet



 Can be a small plane, balloon or drone
 High altitude platform (HAP) above 15 km, or Low altitude platform

(LAP) between 200 m to 6 km
 Proposals from Facebook, Google, spaceX to connect the unconnected

 Frequency bands for HAPs: 38-39.5GHz (global), 21.4-22 GHz
and 24.25-27.5GHz (region-specific)

 Remotely controlled or pre-programmed flight path
 Control and non-payload communication (CNPC) systems
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Unmanned Aerial Vehicles



 Applications
 Communications, disaster management, search and rescue,

security, control, agriculture, IoT, etc
 Covering hotspots
+ 1000x more

 Advantages
 Adjustable altitude
 Potential Mobility 
 Low infrastructure low cost 
 Limited available energy for Drones

 Also, many challenges
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Countless Applications

disaster

Coverage/capacity

V2V

Smarter
mobility

VR

Agriculture
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Challenges

Deployment 

Path planning/mobility

Energy efficiency  

Channel modeling 

Interference 

Handover and 
moving cells

Security and privacy
Resource 

management



Wireless Back-/Fronthauling
 UAV-to-UAV communication required for coordination, interference

mitigation, relaying, routing in the air, etc.
 Satellite and WiFi considered as candidate technologies for providing

wireless backhauling depending on latency-bandwidth requirements
 Satellite backhauling brings the advantage of unlimited coverage

offering the possibility of connecting the aerial network for any
distance
 However, the latency introduced by the satellite links (GEO) may affect

some real time services such as voice and real-time video.
 To avoid satellite delays and the cost, WiFi links can be used albeit

reduced coverage and capacity (doubtful QoS guarantees..)
Recent interest in Free Space Optics

 License free PtP narrow beams
 But tackle rain, fog and cloud attenuations
 Multi-connectivity to the rescue..? 7

Backhaul
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Tools Usefuls for UAVs

5G+5G+

Physics
• Mean field

• Random graphEconomics
• Matching theory

• Pricing

Game theory (GT) and learning 
• Decision making

• Resource management
• Clustering

• Supervised, non-supervised learning

Control Theory
• Lyapunov
• Consensus

Stochastic geometry
• BS/UE location

Stochastic optimization
• CSI/QSI uncertainties

Random matrix theory
• Asymptotics 

Transport Theory
• Association

• Mobility

In this tutorial, we will (briefly) touch on 
GT, optimal transport, and learning
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Part I –
Air-to Ground 

Channel Modeling 
for UAVs
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Air-to-Ground AtG Channel Model
 Radio propagation in AtG channel differs from terrestrial

propagation models
 Typically radio waves in AtG channel travel freely without obstacles

for large distances before reaching the urban layer of man-made
structures.

 UAV-ground channels typically include: 
 Line-of-sight (LOS) and NLOS links 
 A number of multi-path components (MPC) due to reflection, scattering, and 

diffraction by mountains, ground surface, foliage

 Common models define a LOS probability 
between UAV and ground user that depends on:

 Environment (suburban, urban, dense urban)
 Height (h) and density of the buildings (building/km2)
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Air-to-Ground Channel Model
 Received signals include:

 Line of sight (LOS): strong signal (G1)
 Non-line of sight (NLOS): strong reflection (G2) or fading (G3)

 Each group with a specific probability and excessive loss
 Dominant components

 LOS links exist with probability P and NLOS links exist with 
probability 1-P

 Consider LOS/NLOS separately with different path loss values 
Excessive path loss

samples
histogram
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Air-to-Ground Channel Model
 Model by Al-Hourani et al.
 Buildings and environment impact the propagation 

 Distribution of buildings’ heights:

 Suburban
 Urban 
 Dense urban
 Highrise urban

A scale parameter depends 
on environment according 

to a Rayleigh pdf
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Ray Tracing Simulation
 Allows the prediction of signal strength in an accurate 

manner 
 Based on a simulation of actual physical wave 

propagation process
 Can consider different ray types: Direct, Reflected and 

Diffracted rays

 Requires buildings database 

 3D predictions 
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Ray Tracing Simulation 
 Propagation Group Occurrence Probability, obtained at 

frequency = 2 GHz for an urban environment
 Group 1: LOS
 Group 2: NLOS

Example of a group occurrence curve fitting for two groups

 Occurence probability
of a certain propagation
group at a certain angle



Parameter depends on 
environment

Back to LOS Probability
 In urban environments, the LOS probability is given as:
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ratio of built-up land area to the total land area 
mean number of buildings per

unit area (buildings/km2 )





Antenna height
…For large values of h, P(LoS) is a
continuous function of θ and environment
parameters see next slide
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LOS Probability approximation
 Probability of having LOS link:

 Trend approximated to a simple modified Sigmoid function (S-
curve) 

 Increasing LOS probability 
by increasing elevation angle or 

UAV’s altitude

B and C: constants that depend
on the environment
θ: Elevation angle
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Shadow Fading
 Modeling shadow fading

Received signal 
power

Shadow fading

Gaussian 
distribution

Parameters depend 
on environment
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Ricean channel model
 Small scale fading is described by the Rician distribution

due to the presence of a strong LOS component in the
AtG channel

 Distribution of the received signal amplitude:

 Rician K factor:
 Depends on the environment
 Lower for denser environments 

LOS amplitudeAverage multipath 
component power

Bessel function

L-BandRicean K-factors = 12 dB and 27.4 dB in
C-band in the near-urban environment.

14 dB in L-band and 28.5 dB in C-band for the
suburban settings.



Way forward
 Air-to-air channel models (still lacking in literature)
 The probabilistic model may not be the best, real-

world measurements can help
 Airframe shadowing for large-sized or small-sized 

aircraft, tree/building shadowing at low altitude small 
UAV, also terrain shadowing for mountainous 
scenarios or beyond LOS conditions
 Of relevance here are the works of Matolak and NASA

 How to integrate multiple antennas, what is the most 
adequate number of elements and their location 
(MIMO or mmWave air-to-ground channels?)

19
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Part II –
Performance 

Analysis
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Drone small cells in the clouds: 
Initial insights on design and 

performance analysis



System Model

 Downlink scenario
 Drones provide coverage for a target area
 Scenarios:

 Single drone
 2 drones without interference
 2 drones with intercell interference

 Target: Meeting the minimum SINR
requirement on the ground

22



Main Goals

 Determining the optimal altitude of drones
 Leading to maximum coverage
 Full coverage using minimum transmit power for the drones

 Optimal deployment of two interfering drones
 Distance between the drones?
 Altitudes?

 Highlighting tradeoffs while deploying drones
 Interference, coverage, transmit power

23



Impact of Drone’s Altitude 

 Higher altitude: Higher path loss vs. higher LOS proba.
 Lower altitude: Lower path loss vs. more NLOS
 Altitude and flight constraints

 Higher and lower altitudes are bounded

24

What is 
the Optimal 

Altitude? 



Single Drone

 Minimize transmit power via an optimal altitude
 Path loss as a function of elevation angle:

25

Environmental parameters 

Additional  loss for NLoS

Optimal altitude 



Optimal Altitude 

 Optimal altitude depends on the area size (Rc)
 Increasing drone’s altitude to service larger areas
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@Low-altitude: high shadowing
+ low LOS probabilitycoverage radius decreases

@ high-altitude: high LOS probability but PL
Increases –> Coverage decreases

E.g.; optimal altitude for providing 500m coverage
radius while consuming min. tx power is 310 meters

Altitude increases w/ coverage radius



Two Drones

 Given a desired geographical area:
 Maximize the total coverage area
 What is the distance between drones?
 What is their altitude?

27

Total coverageDistance between 
drones



No Interference Case
 Deploying each drone at its optimal altitude
 Packing the coverage areas inside the target area
 While keeping the distance between drones as far as

possible, but inside the target area

28

Maximum coverage
range of each drone

Total coverage



Two Interfering Drones
 Consider a rectangular geographical area
 High distance between drones: covering undesired area
 Small distance between drones: high interference

29
• No coverage in between due to the interference

• Drones should not be placed too close

• 300 meter altitude
• 1100 meter separation



Results

 Bounded target geographical area
 Existence of optimal drones’ separation distance for

maximum coverage
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At high drone distance, although separated,
coverage ratio is low (undesired)

Likewise, if too close interference increases.

optimal separation distance exists!



31

Unmanned Aerial Vehicle with 
Underlaid Device-to-Device 

Communications: Performance and 
Tradeoffs



System Model

 Downlink Scenario: UAV coexists with a device-to-device (D2D)  
network

 Two types of users: downlink users (DU) and D2D
 UAV provides service for downlink users
 Interference between UAV and D2D transmitters
 Static and Mobile UAV Cases

32



UAV and D2D: Assumptions

 Users (DU and D2D) distributed based on Poisson point  
process (PPP)
 Number of users follows Poisson distribution, but uniformly 

distributed over the area
 The number of points in a bounded area has a Poisson 

distribution with mean e.g. λ×A or λ×B

 Underlay D2D communications:
use existing licensed spectrum

 Can we analyze the performance
tradeoffs for UAV deployment
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 Derive the average coverage probability and sum-rate
expressions
 Finding the relationship between UAV parameters (altitude, 

etc.) and rate/coverage
 Finding some fundamental performance tradeoffs

What is the optimal altitude of the UAV that maximizes 
the coverage and rate?
 Fundamental tradeoffs between DU and D2D users

How to optimize coverage using UAV mobility ?

Main Objectives

34



 Coverage probability for downlink users (DUs)

 Coverage probability for D2D users

 Average rates

Performance Evaluation Metrics

35

SINRSINR ThresholdPolar coordinates



Static UAV: Analytical Results

 D2D Coverage Probability

 DU Coverage Probability

36Interference from D2D links

UAV 
transmit 

power

D2D 
transmit

power

UAV-D2D
distance

Distance
Between

D2D pairs

D2D
density

LoS
probability



 Number of D2Ds
 Impacts interference generated at the DUs

 Distance between each D2D pair
 UAV’s location and altitude

 Impacts air-to-ground channel 
 Transmit powers of D2D and UAV 

 Directly affect the coverage probabilities
 SINR threshold
 Overall, we have a tractable expression to analyze UAV

coverage

Key parameters

37



Results: Static UAV
 Optimal altitude for DU maximum coverage

 LoS and NLoS tradeoff

 Impact of altitude on D2D coverage probability
 UAV is an interference source for D2D

38

Optimal



Results: Static UAV
 Average sum rate vs. altitude

 Considering DU and D2D rates
 Depends on the distance between each D2D pair ሺ𝑑ሻ
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The lower is 𝑑 the higher
is the sum-rate



Mobile UAV
 UAV moves over the target area
 Transmits at given geographical locations: “stop points”

 Goal: satisfy DUs coverage requirements by covering
the entire area

 Analyze the impact of UAV’s mobility on the outage
probability of D2D links
 Considering the spatial correlation in D2D communications

Question: What is the minimum number of stop points
(delay)? 40



Mobile UAV
 Minimum number of stop points

 Depends on: UAV altitude, D2D density, size of area,
coverage constraint

 Moving the UAV to provide complete coverage
for the area of interest
 Using optimal circle covering approach
 Full coverage with minimum

number of circles

41



Results: Mobile UAV
 Maximum coverage radius vs D2D density

 Higher number of D2Ds: higher interference
 Decreasing coverage radius!

42



Results: Mobile UAV
 Number of stop points vs. D2D density

 Higher number of D2Ds: higher interference
 Increasing number of stop points!

43



Results: Mobile UAV
 Altitude and number of stop points

 : target DU coverage requirement
 Altitude impacts coverage range and thus number of stop

points

44

Higher coverage requires
more stopping points



Results: Mobile UAV
 Coverage-delay tradeoff

 Higher number of stop points:
 Better coverage performance for DUs
 Leads to a higher delay

45



Results: Mobile UAV
 UAV affects the D2D outage

 No UAV: only other D2Ds create interference
 With UAV: UAV+ other D2Ds are interference sources

 Moving UAVs leads to higher average outage probability for
D2D network

46
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Part III – Optimal 
Deployment



 Where and when to deploy UAV-BSs?
 What metrics to optimize (long term vs. short term)?
 How to develop wireless-aware path planning mechanisms?

Optimal Deployment and Mobility

48

UAV Base Stations (LAPs) Terrestrial Base Stations
• Deployment is three-

dimensional
• Deployment is two-

dimensional (with small 
exceptions)

• Short-term, frequently 
changing deployments

• Mostly long-term,
permanent deployments

• Mostly unrestricted locations • Few, select locations
• Mobility dimension • Fixed and static



49

Deployment strategies of multiple
UAVs for optimal wireless coverage



System Model

 Downlink communications

 Using directional antennas for UAVs

 Interference between all UAVs

 Circular target area

 Meeting the minimum SINR
requirement on the ground

50



 Derive the coverage probability and coverage range of 
each UAV

 Maximize the coverage performance by efficient 
deployment of multiple UAVs

 Adjust UAVs’ altitude based on antenna beamwidth

 Avoid overlapping coverage to avoid interference

Main Objectives
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 Considering shadowing effect in LoS and NLoS links
,

Downlink Coverage Probability 
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Received signal power

Path loss

3 dB antenna gainQ function



 Coverage range of each UAV: 

 M identical UAVs
 Total coverage is maximized
 No overlap between UAVs’ coverage areas

Multiple-UAVs deployment
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 Big circle: area of interest which needs to be covered
 Each small circle: Coverage region of  each UAV   
Maximizing the packing density is equivalent  to 
maximizing total coverage

Approach: Circle Packing Problem
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The optimal 
packing of 10 

circles in a circle

The optimal packing 
of 15 circles in a 

square

The optimal packing 
of 6 circles in a 
right isosceles 

triangle



 Coverage radius vs. number of UAVs (circle packing):

 Upper bound on the coverage radius: 

Results 
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 Altitude versus number of UAVs
 More UAVs:

 Less coverage radius per UAV is required
 Reduce UAVs’ altitudes to avoid interference  (overlapping)

Results 
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 Meeting a total coverage requirement 
 What is the minimum number of UAVs?
 Depends on the size of the area
 Choosing appropriate number of UAVs based on coverage 

requirement and size of target area

Results 
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 Total coverage and coverage lifetime tradeoff
 Increasing number of UAVs:

 Transmit power per UAV can be reduced
 Higher coverage lifetime

Results 

58
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Cooperative deployment and mobility 
of UAVs for optimizing rate-delay 

tradeoffs



Cooperative UAV Deployment

Task 3Task 2 Task 1

Task 4

 Given a number of tasks in an area and some autonomous 
agents (e.g., UAVs)
 How to dispatch the agents to service the tasks?
 Can the agents make their own decisions on servicing the tasks?
 Almost no work considered the problem in the context of a 

wireless/communication network
 Tasks are queues of data with no direct connectivity

Task 6Task 5

60
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 The problem is well studied but…
 Most approaches are 

 Robotics-oriented
 Mainly in military applications (tasks are targets)
 Other  related problems (the repairman problem, dynamic vehicle 

problem… )
 Software engineering (autonomous agents)
 The tasks are usually considered as passive entities

 Almost no work considered the problem in the context of a 
wireless/communication network
 With next generation self-organizing networks this problem becomes quite 

relevant
 Nature of wireless networks (channel, traffic, etc)
 Quality of service

Cooperative UAV Deployment
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Agents in Wireless Networks
 Given a number of tasks in an area

 Consider each task as a M/D/1 queuing system generating 
packets with a Poisson arrival

 Each task i has an arrival rate λi

 The network operator, requires..
 Data collection from the tasks
 Wireless transmission of the data to a central receiver

 The network owns a number of autonomous agents 
that need to
 Decide on which tasks to service
 Collect the data and transmit it taking into account

 The amount of data collected
 The delay



Task 4

Task 3

Task 5

Task 2

UAV Agents in Wireless Networks

Central Receiver
(Command Center)

Task 1

 How will such groups form?
 A cooperative game between Tasks and Agents

 Solution using notions from operations research, wireless 
networks, and  queuing theory

Collect data from task  
5 and transmit it

Collect data from task 
3 and transmit it

Collect data from task 
4 and transmit it

Collect Data from 
Task 1 and transmit it

Collect Data from 
Task 2 and transmit it

63
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Problem Formulation
 Coalitional game where

 The players are the tasks and UAVs, hence, the player set N is the 
set of all tasks and UAVs
 Denote M the set of UAVs and T the set of tasks, N = M U T

 Each coalition S consists of a number UAVs servicing a number of 
tasks t

 A UAV can be either
 A collector: more collectors means smaller service time, less 

delay
 Each collector i has a link transmission capacity µi
 For a number of collectors G servicing a task i in a coalition S the 

total link transmission capacity is

 A relay: more relay means better effective throughput (less outage 
probability)
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Problem Statement
 Each coalition S can be seen as a polling system 

with exhaustive strategy and switchover times
 Polling systems are ubiquitous in computer systems
 The main idea is that a server is servicing multiple 

queues (sequentially or not)
 Exhaustive implies the server collects all the available data 

from a queue before moving to the next
 Switchover times are the time to move from one task to 

the other
 In this context, each coalition S consists of

 A number of collectors acting as the polling system 
server 

 The tasks are the queues of the polling system
 Switchover time is the travel time from one task to the 

next
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Performance metrics - Delay
 For a polling system, it is difficult to have an exact 

expression for delays, but, we can use the pseudo-
conservation law for a coalition S

 Stability of coalition S (polling system) requires ρS < 1
 The total switchover time θS depends on the sequence in 

which the tasks are visited
 Nearest neighbor solution to the travelling salesman problem

Utilization factor ρi: 
ratio of arrival rate to link 
transmission capacity of 

collectors for a task i

Total switchover time 
θS of coalition S

Sum of utilization 
factors over all tasks 
in S
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Performance metrics - Throughput
 For each coalition, the total effective throughput 

from the data collected and transmitted is given by

 Pri,BS is the outage probability for wireless transmission 
from task i to the central BS
 Improved by having UAVs working as relays on the link 

between the collectors on task i and the BS

 For each coalition, the UAVs and tasks are given a 
reward from the network operator depending on 
the throughput-delay trade off achieved
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Utility function
 Given the throughput and delay previously defined, for 

each coalition S we propose the following utility

 β is a tradeoff parameter that represents the weight that a coalition 
puts on the throughtput and delay

 The utility is based on the concept of power which is a ratio  
between effective throughput and delay

 Utility is transferable: the total revenue achieved by coalition S 
with δ the revenue per unit power

 Given the players set N and the utility v the question is
 We use the framework of hedonic coalition formation games to 

solve the problem
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Hedonic Coalition Formation
 In our game we can say that
 A UAV prefers a coalition S1 over a coalition S2 if

 The UAV is not the only UAV in its current coalition S2 and
 The payoff he receives in S1 is higher than S2, and he had not 

visited this  coalition before (history tracking).

 xi
S is the payoff received by player i from the division of the utility 

(we consider equal division for this work) 
 h(i) history set
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Hedonic Coalition Formation
 A task prefers a coalition S1 over a coalition S2 if

 The payoff he receives in S1 is higher than S2, and he had not 
visited this  coalition before (history tracking).

 By using these preferences we can derive an algorithm 
form coalitions between the UAVs and the tasks

 Having defined the preferences, the next question is
 How to form the coalitions?
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Coalition Formation Algorithm
 Coalitions form and break as a result of 

selfish decisions by the players (agents and 
tasks)

 Switch rule

 Every player switches its current coalition to 
join another, if and only if the new coalition is 
strictly preferred using the defined preferences.



72

Coalition formation algorithm
Initial Network State: 

Non-cooperative network

Task discovery: 
The central BS informs the UAVs

of the tasks in the area

Each player ( UAV or task) surveys
nearby coalitions for possible switch 

Each player takes the switch 
Decision that maximizes its payoff

Sequential switch operations until convergence

Final partition: Continuous data 
collection and transmission by the UAVs

The final 
partition is 

Nash-stable, 
no player has 

an incentive to 
unilaterally 
change its 
coalition
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Simulation results (1)
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Simulation results (2)
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Mobile UAVs for Energy-Efficient 
Internet of Things Communications



System Model

 Uplink IoT communications 

 Meeting SINR requirements of IoT devices

 Periodic versus Probabilistic IoT activation models 

 UAVs update their locations based on devices activation 
patterns 

76



IoT devices

 Battery limited
 Typically unable to transmit over a long distance due to their 

energy constraints
 UAVs can dynamically move towards IoT devices, collect the 

IoT data  moving IoT aggregators

 Many IoT devicesinterference issue

 IoT activations:
 Periodic: weather monitoring and smart grids applications
 Probabilistic: health monitoring and smart traffic control 

applications.
77



 How to enable reliable and energy-efficient uplink
communications in a large-scale IoT using UAVs?

 What are the joint optimal 3D UAVs’ locations, device-
UAV associations and uplink power control?

 Need for a framework for updating UAVs locations in
time-varying networks:

1) Update times: shows how frequently UAVs update their
locations

2) UAV trajectories

Main Objectives
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 Joint UAVs’ locations, associations, and power
optimization

Problem Formulation
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IoT transmit 
power

UAV j 
location

Set of active 
IoT devices

SINR 
Constraint

Channel 
gain

Association 
matrix



 Decompose the problem into two subproblems
 Solve the problem for fixed association 
 Solve the problem for fixed UAVs’ locations

 Consider interference and non-interference scenarios separately

General Approach

80



 UAVs’ locations and device-UAV association
 An example, given the locations of active IoT devices

Results 
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 5 UAVs serving 100 active IoT devices uniformly distributed over the area



 Reliability
 Probability that active devices are successfully served by 

UAVs
 Significant enhancement by dynamically moving UAVs

Results 
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 Total transmit power vs. number of UAVs
 Compared with stationary aerial base stations

Results 
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• 5% power reduction 
vs. baseline on the 

average



 Total transmit power vs. number of orthogonal channels 
for meeting SINR requirements
 More channels: 

 less interference and hence, lower transmit power needed to meet 
SINR requirements of each device 

Results 
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• 100 devices served by 5 UAVs

• By increasing the number of channels
from 25 to 50, the total transmit power
of devices can be reduced by 68%



 Time varying IoT network
 UAVs dynamically update their locations based on IoT

activations
 Probabilistic activation during [0,T]:

 Beta distribution with parameters 

 Periodic activation:
 Each device has a specific activation period 

IoT activation models
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 Time instance at which the UAVs’ locations and 
associations are updated

 Depends on the activation process of IoT devices

 Number of IoT devices
 For higher number of devices more updates are needed!

 Energy of the UAVs
 More updates requires more mobility

UAVs’ update times 
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 For probabilistic activation case
 Choosing appropriate update times based on

number of active devices

UAVs’ update times 
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Regularized incomplete beta 
function

Average number of 
active devices

Total number of 
devices



 Number of devices which must be served vs. update time
 More frequent updates: 

 More devices can be served
 Less active (unserved) devices remain

Results 
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For a higher number of update times or
equivalently shorter time period between
consecutive updates, the average number
of devices that need to transmit their data
decreases



 Update times for different number of active devices
 Depends on the activation process (beta distribution parameters)
 Ensuring that the average number of active devices is less than a

Results 
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Average number of 
active devices

• To achieve lower value of a, updates need to be done more frequently so as the time 
interval between updates decreases. 

• For e.g., to meet a = 100, 75, and 50, the 5th update must occur at t = 0.41, 0.55, and 1



 UAVs update their locations according to the activity of 
the IoT devices

 How to optimally move UAVs between the initial and 
the new sets of locations?
 Mobility with minimum total energy consumption
 Energy consumption of each UAV depends on travel distance, 

UAV’s speed and power consumption as function of speed

UAVs’ mobility 
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Travel time



 Which UAV goes where?

UAVs’ mobility 

91Update time t1Update time t2

New set of UAVs’ 
locations

Initial set of UAVs’ 
locations

Energy constraint 
of each UAV

Can be 
transformed 

into an 
assignment 

problem  

Transportation matrix

Energy from location k to l



 Update times impact the UAVs’ energy consumption for 
mobility
 More updatesUAVs need to spend more energy on mobility 

Results 
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• by increasing the number of updates from 3 to 6, the energy consumption of
UAVs increases by factor of 1.9
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Part IV – Resource 
Management



 Let’s first take a look on the impact of hover time

Resource management
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UAV Networks Terrestrial Networks
• Spectrum is scarce • Spectrum is scarce
• Inherent ability for LoS

communication can facilitate
high-frequency (mmW)

• Difficulty to maintain 
LoS poses challenges at 
high frequencies

• Elaborate and stringent 
energy constraints and models 

• Well-defined energy 
constraints and models 

• Varying cell association • Static association
• Hover and flight time 

constraints
• No timing constraints, BS 

always there
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Optimal Transport Theory for Hover 
Time Optimization



Flight Time Constraints?

 UAVs have limited on-board batteries
 Cannot fly for a long time

 Flight regulations and weather conditions
 No-fly time and no-fly zones
 Wind and rain effects

 Mobility based on demands
 Cannot stay at one location for a long time

 Flight time constraints must be taken into account:
 Minimizing flight time while meeting the demands
 Optimizing the service performance under flight time constraints 
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System Model

 M stationary UAVs serve N users
 Users’ distribution:

 2D spatial distribution of users
 Determines how likely a user is present

 M partitions each serviced by one UAV
 Hover time: Time duration that a UAV spends over a given area
 Channel model adopted is the one explained earlire
 Goal: finding optimal cell partitions and associations

 Based on users’ distribution, hover times, and UAVs’ locations

 Two scenarios:
 Maximizing total service data given the maximum hover times (Scenario 1)
 Minimizing average hover time while meeting load requirements (Scenario 2)
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Problem Formulation (Scenario 1)

 Total bandwidth for UAV i :
 Hover time of UAV i :
 Effective data transmission time:
 Control time which is not used for transmission:

 Portion of hover time which is not used for data transmission
 Used for processing, computations, and control signaling.
 Is a function of the average number of users

 Data transmitted to a user located at (x,y) served by UAV i :

98



Scenario 1
 Time and bandwidth are the resources
 We consider some level of fairness in resource allocation:

 Maximizing average total data service by optimal partitioning:

99

Depends on hover times and
bandwidths



Approach: Optimal Transport Theory

 Moving items from a source to destination with minimum cost

 What is the best way to move piles of sand to fill up given holes of
the same total volume?

 Goal: Minimizing total transportation costs
 Where should each pile be moved?
 Our problem: transportation from users to UAVs!
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Monge-Kantorovich Transport Problem

 Given two probability distributions

 Same amount of mass in source and destination
 What is the optimal mapping between ?

101



Back to our problem

 We have a semi-discrete optimal transport problem
 Mapping from users’ distribution (continuous) to UAVs (discrete)

 Optimal cell partitions are related to optimal transport maps

102



Finding Optimal Partitions and 
Associations 

 Finding optimal values of leads to the optimal transport map
and optimal cell partitions!

 Complete characterization of partitions is now possible
103

Kantorovich Duality Theorem:

Theorem 1:

Cost function depending 
on data service 



Finding Optimal Partitions and 
Associations 

1) F is a concave function of

2) Using gradient based method to find optimal

3) Optimal cell partitions are given by:

104

Theorem 2:

Special case: results in a weighted Voronoi diagram 



Results: Scenario 1

 We consider truncated Gaussian distribution for users
 Suitable for modeling hot spots in which users are congested
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Results: Scenario 1

 Lower : users’ distribution is more non-uniform
 Jain’s fairness index is one when all users receive equal service

106

Average number of users in each 
partition

Fairness index for average data service



Scenario 2 

 UAV-based communications under load constraints
 Goal: minimizing the average hover

time needed for serving the users
 By finding optimal cell partitions

107

Average hover time of UAV i to 
service partition :

Transmission time Control time

: rate
Load (in bits)



Problem Formulation (Scenario 2)

 Average total hover time of UAVs:

 We will characterize the optimal solution using optimal
transport theory again
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Optimal Partitions

 Proof idea:
 Proving the existence of solution
 Comparing optimal partitions and a non-optimal variation of those
 Then characterizing the solution

 Note: weighted Voronoi is a special case (with no control time)
109

Theorem 3: optimal cell partitions can be characterized as



Results: Scenario 2

 Average hover time vs. control time
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Results: Scenario 2

 Hover time and bandwidth tradeoff
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Beyond 5G with UAVs: Foundations of a 
3D Wireless Cellular Network



System Model
 3D aerial network:
 Drone-users (drone-UEs)
 Drone base stations (drone-BSs)
 HAP drones for wireless backhaul

 Important metrics:
 Connectivity
 Latency

 Two key problems:
 3D network planning of drone-BSs

 Deployment and frequency planning 
 3D cell association for drone-UEs 113



Proposed Framework

114

3D deployment of drone-BSs 
and frequency planning: 

truncated octahedron cells

Estimating the spatial 
distribution of drone-UEs using 

machine learning tools

Optimal 3D cell association for
minimum latency of drone-UEs 
using optimal transport theory

Drone-BSs’ locations
and co-channel cells

3D spatial distribution
of drone-UEs



Network Planning of Drone-BSs
 Inspired by 2D hexagonal cells
 Hexagons covers an area without gap or overlap
 Closest to circle

 Omni-directional antenna

 How about in 3D?
Criteria:

 Full coverage with minimum number of drones 
 Closest shape to a sphere
 Tractable
 Candidates for regular 3D shapes:

 Cube, Hexagonal prism, Rhombic dodecahedron, Truncated 
octahedron

115



Results: Network Planning 

116

 Number of drone-BSs needed for full coverage of space
 Different space filling polyhedra



3D Network Planning of Drone-BSs
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 Truncated octahedron structure will provide an initial 
way to place drone-BSs
 Placing drone-BSs at centers of truncated octahedrons 

14 faces:
8 hexagons
6 squares



Deployment and Frequency Planning 
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 Theorem 1. the three-dimensional locations of drone-BSs 
are:

 Theorem 2. the feasible integer frequency reuse factors can 
be determined by:

where a, b, c are integers chosen from set {…,-2,-1, 0, 1, 2,…}

n1, n2, n3, m1, m2, and m3 are integers that
satisfy above equations

Integer frequency reuse factors: 1, 8, 27,64,…



Results: Frequency Planning
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 Integer frequency reuse factors (q): 1 and 8

 Higher q : higher SINR but requires more bandwidth



Latency-Minimal 3D Cell Association
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 Latency in serving drone-UEs
 Transmission latency
 Backhaul latency
 Computational latency

Depend on: resources, congestion, 
and 3D cell association

Transmission Backhaul Computation
Average number of 
independent drone-

UEs in cell n

3D cell partition 

Drone-UEs’ 
distributio

n

Packet length

Bandwidth

Total number of drone-
UEs (assumed to be large) Challenging to solve



Solution Characterization 
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 Using tools from optimal transport theory
 Finds optimal mapping between two probability measures 
 Considering a semi-discrete optimal transport problem

 Mapping drone-UEs’ distribution (continuous) to drone-BSs (discrete)
 Optimal 3D cell partitions are related to optimal transport maps

??

Steps: 
- Existence of solution by the existence an optimal map
- Comparing optimal partitions and a non-optimal variation of those
- Characterizing the solution



Solution Characterization 
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Theorem 3: the optimal 3D cell partitions are characterized by:

Note: 3D cell shapes depend on:  
- drone-UEs’ distribution, drone-BSs’ locations, backhaul rate,  
computational speed 



Results: 3D Cell Association 
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 Proposed approach vs. SINR-based association 
 Reduces latency
 Improves spectral efficiency 



Results: Latency
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 Latency increases by increasing packet size
 Transmission 
 Computation
 Backhaul

M. Mozaffari, A. Taleb Zadeh Kasgari, Walid Saad, Mehdi Bennis, 
Merouane Debbah, “Beyond 5G with UAVs: Foundations of a 3D Wireless 
Cellular Network”, https://arxiv.org/abs/1805.06532
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Caching in the Sky: Proactive Deployment 
of Cache-Enabled Unmanned Aerial 
Vehicles for Optimized Quality-of-

Experience



System Model
 Considerations:

 Users mobility
 Users’ content request
 Caching at UAVs
 UAVs’ deployment

 Transmission links
 (a) Content server->BBUs->RRHs->users
 (b) Content server->BBUs->UAV>users
 (c) Cache->UAVs->users 126



 Maximizing users’ quality of experience (QoE) using 
minimum UAVs’ transmit power

 Optimizing

 Users association 

 UAVs’ locations

 Content caching

Main Objectives

127



General Approach

 For learning and predictions, we use the neural network 

framework of echo state networks 128



 Notion of “reservoir” (random)
 Only need to train the output layer

via linear regression
 Good at dealing with time stamped data 

Echo State Networks

W in

W
x n 

y n 

W

y n1 y n 

W in W

Wout Wout Wout Woutx n1 x n 

W
W in W in W

y n2 
x n2 
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Echo State Networks

Step 3.

Training Process

Step 1. 

Step 2.

Usage Process
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ESN for Caching
 ESN model consists of 

 Agents: Baseband units of a CRAN
 Input: the input is the users locations and context 

information (e.g., requested videos, etc.)
 Output: the output is prediction of mobility patterns
 ESN model: This is the reservoir model, without going 

through it now, it is composed of a set of matrices that enable 
the recurrent neural network learning/predictions

 Conceptor: use of a week mobility as “pattern”

 For simulations, we use real data from BUPT and the 
Youku video website



 Average transmit power of each UAV vs. number of users
 Using proposed approach, 20% reduction in transmit power 

compared to other algorithms

Results 
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 The percentage users with satisfied QoE versus the number 
of the users

 Using UAVs leads to a significant QoE improvement!

Results 
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 Decreasing transmit powers while increasing the number 
of storage units
 UAV will directly transmit the requested contents to the users

Results 
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Liquid State Machine Learning for 
Resource Allocation in LTE-U UAVs



System Model

 Consider the downlink of an LTE-U network composed of K dual-
mode UAV-base stations and W ground WiFi access points

 The UAVs are equipped with cache storage units
 UAVs can be deployed as flying base stations with caching capabilities
 The UAV can cache a set of C popular content that can be pre-fetched from

a local cloud
 Cloud-UAV fronthaul links are licensed, wireless links

 On the licensed band, we consider an FDD mode for the downlink of
the LTE-U users, while we use a TDD mode with duty cycle for the
unlicensed band
 LTE-U transmissions will happen for a fraction of time      over the unlicensed 

band, and will be muted for the rest of the slot

 The ground WiFi access points (WAPs) use a standard CSMA/CA
136



WiFi Data Rate Model
 The WiFi saturation capacity over the unlicensed band will be:

 Tc, Ts, and Tσ represent the average time the
channel is sensed busy because of a successful transmission, during a 
collision, and the duration of an empty slot, respectively
 Computed using conventional approaches
 The WiFi network uses a standard DCF and RTS/CTS access schemes

 The per user WiFi rate will be:
137

# users Probability of 
occurrence of a transmission Successful 

transmission
probability

Average
packet

size



UAV Data Rate Model
 We use the air-to-ground channel model introduced by Hourani et al., 

in which the probability of a LoS connection depends on the ground 
environment, and, thus, the average path loss will be:

 with

 and

 The data rate on the licensed band will therefore be:

138

Fraction of licensed
band for user i Bandwidth Fronthaul power



UAV Data Rate Model
 Over the unlicensed band, the data rate of the UAV will be:

 The fronthaul UAV k-cloud rate for each associated user will be:

139

Number of
users at t Average path loss

Fraction of time for
unlicensed band



Queuing Model
 The queue length of user i at the start of slot t will be:

 The data rate will be

 Link (a) is the  UAV-user link over the licensed band
 Link (b) is the UAV-user link over the unlicensed band
 Link (c) is the cloud-UAV-user licensed band link
 Link (d) is the cloud-UAV-user unlicensed band link 140

Queue length Arrival rateData rate



Problem Formulation
 Queue stability will be used to measure the delay:

 The key goal is to solve the following resource management problem:

 Challenging problem because it includes both content predictions/caching and 
spectrum management which is non-convex and complex

 Solution? Neural networks for predictions AND resource management!
141



Liquid State Machines
 We need an algorithm that can: a) track the network over time,  b) 

store user information, and c) rapidly find the resource management 
solution
 We use spiking neural networks (SNNs) since they can capture accurate 

activation of neurons which enhance their predictive capabilities
 SNNs have two major advantages: fast real-time decoding of input 

signals that are continuous and a temporal dimension that can help a 
high volume of information for predictions

 However, general SNNs are computational complex to train
 Solution via liquid state machines (LSMs)
 LSMs are SNNs that are easy to train as they use the concept of 

reservoir computing (basically random training) to make them 
amenable to easy implementation
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LSM for Predictions
 Basic architecture of LSM

 The “liquid” is a leaky-integrate-and-fire (LIF) SNN that mimics 
exactly a biological neuron

 The input in our model is                                                         which is 
a vector that represents the users’ context information 

 The output is a request distribution vector
 The output function builds the relation between LSM state and the 

content request distribution 143



 The output function is trained in an offline manner using 
ridge regression:

 Then, the prediction of the output can be found:

 We now need to define another LSM for solving the 
resource management optimization problem

LSM for Predictions
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LSM state 
sequence

Identity 
matrix

Learning
rate

Target
output



 The UAVs are the agents that run the LSM for resource management
 The input is a vector mk(t) of actions observed by UAV k on other 

UAVs, with each action being a user association scheme
 Using this input and one of our previous results, we can recast on 

cached content, we can recast the original optimization as a convex 
problem to choose the actions

 The output of the LSM is a vector bk(t) that provides the resource 
allocation results, with each element being the expected number of 
stable queue users:

 This is used with the output function to solve our original problem

LSM for Resource Management
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Simulation Results

 Real data from
Youku

 LSM provide very
accurate predictions
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Simulation Results
 The average number 

of stable queue users
increases with 
network size

 Caching brings about
substantial gains,
even without LSM

 LSM provides further
gains
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Simulation Results

The proposed LSM 
algorithm leverage
the power of SNNs
to substantially
reduce convergence
time (about 1/3 less
than Q-learning)
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Simulation Results

The more we can
cache, the more 
users we can serve 
with
stable queues
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Cellular-Connected UAVs over 5G: Deep 
Reinforcement Learning for Interference 

Management



System Model
 Uplink of a cellular network composed of S base stations

(BSs), Q ground users, and J cellular-connected UAVs
 UAVs must co-exist with ground users and share resource

blocks
 UAVs are assumed to be flying at a constant altitude (different

for different UAVs) and collecting data (e.g., surveillance,
sensing, etc.) that needs to be transmitted to the ground BSs
 Each UAV has a specific mission and needs to move from an 

origin to a destination while transmitting data along the way
 For ease of exposition, we consider a virtual grid that the UAVs use

for their mobility, i.e., they move along the centers of small grids
 Areas within the grid are chosen to be sufficiently small
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 The SINR for UAV j’s transmission to a ground BS s, over RB c is:

 The achievable rate for a UAV j will then be given by:

 We also consider queuing latency, using an M/D/1 model:

UAV-BS Transmission Model
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Total Interference (ground 
and air)

Bandwidth

Rician
channelUAV power

# RBs

Packet
arrivals

Data 
rate



Ground Users Data Rate Model
 For the ground users, the achievable data rate will be given by:

 Ground users can potentially be significantly affected by interference 
stemming from flying UAVs (due to the drones’ better channel 
towards the ground BSs)

 Our objectives will therefore be to answer the following key 
questions:
 How can we design a wireless-aware path planning mechanism for 

cellular-connected UAVs?
 How can the designed path plan optimize the UAVs’ mission 

goals, while minimizing impact on the ground network? 153

Total Interference
(ground and air)



Problem Formulation
 We can pose our path planning problem as follows:

154

Tradeoff between interference
to ground, delay, and path length

Each area is visited once

Maintain origin-destination

Arrive/leave same area

One BS
per UAV

SINR/power
constraints



 Problem is challenging to solve in a centralized manner, especially to 
do joint power allocation, navigation, and cell association

 Objective functions are coupled through interference => a game-
theoretic approach is appropriate!

 We formulate a dynamic game:

 The utility functions can be defined as follows:

Game-Theoretic Approach
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UAVs Stages Actions

State space: distance/orientation

Distributions Utility functions

Lagrangian conversion of centralized case



Solution Approach
 Since the game is dynamic and has a large action space, it is 

challenging to analytical characterize the subgame perfect Nash 
equilibrium (SPNE)
 Such characterization may also require full knowledge of the 

system and state, which is not very practical
 We will seek to develop a reinforcement learning (RL) algorithm 

that enables the UAVs to autonomously find the SPNE
 RL algorithm with predictive capabilities is needed to operate with 

minimal information
 Actions are time varying => need dynamic RL predictions and 

highly adaptive algorithm
 Recurrent neural networks!
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ESN for UAV
 We not only need to deal with time-stamped data, but 

also with large action sets
 We will propose a novel deep ESN architecture
 Input: the input to the first layer is the external network state 

while input to subsequent layers are previous layers
 Output: the output is estimation of utility function
 ESN model: This is the reservoir model, without going 

through it now, it is composed of a set of matrices that enable 
the RNN learning/predictions and is trained by our network 
state

 When it converges, the algorithm will find an SPNE, 
but establishing general convergence is challenging
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Simulation Results

Proposed
wireless-aware
approach
avoids causing
ground 
interference
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Simulation Results
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Simulation Results
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Simulation Results

Convergence depends on learning rate (0.01 is ideal for this case) 



Other UAV Comm. Approaches
 UAVs as backhaul (see U. Challita and W. Saad, GLOBECOM 

2017)
 More on machine learning (see M. Chen, W. Saad, et al., 

GLOBECOM 2017)
 UAVs as relay stations (see works by L .Swindelhurst et al. and 

R. Zhang et al.)
 Cyclical resource allocation with optimal deployment of UAVs 

as relays (see works by Y. Zeng and R. Zhang)
 Deployment within a cloud radio access network and related 

environments (see Yanikomeroglu et al.)
 Channel modeling, localization, tracking, public safety, and 

related ideas (see works by I. Guvenc et al.)
162
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Part V – Security
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CPS Security of UAVs
 UAVs are essentially cyber-physical systems 

 Cyber vs. Physical: the physical world follows (typically) 
laws of nature or control-theoretic models, which have 
different constraints and time scales compared to cyber 
features

 Human-in the loop: man meets machine (UAV)
 CPS nature brings cyber and physical vulnerabilities
 As UAVs become more prevalent, they will face more 

and more security challenges
 Autonomy is both a blessing and a curse
 Let’s see an example security problem



Delivery Drones

 Drones will be used in the real-world for delivering goods 
or to deliver rescue mission items
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Security of Delivery Drones

 Delivery drones are prone to a variety of cyber-physical 
security threats
 Cyber attacks to hack the cyber/wireless system and re-

route the drone or to jam its communication
 Commercial drones will be in the range of civilian-owned 

hunting rifles that can be used for physical attacks
 In such scenarios, humans will be in the loop!

 Attackers will likely be humans (e.g., choose a high point 
to shoot the drone or jam its link in line-of-sight)

 Vendors who own the drones will have stringent delivery 
times especially for medical delivery (framing effects!) 166



Basic System Model

 A vendor sends a delivery drone from an origin O to a 
destination D
 In an ideal world, vendor always chooses shortest path

 Presence of adversary
 Attackers can interdict the drone at several threat points 

such as high buildings or hills to cause physical or cyber 
damage

 A destroyed drone must be re-sent by the vendor, leading 
to increased delivery times and economic losses

 The system can be modeled as a graph
167



Basic System Model

 The vendor is an evader wants to minimize expected 
delivery time by choosing an optimal path

 The attacker is an interdictor who chooses a location to 
attack the drone and maximize the delivery time

 Natural zero-sum network interdiction game 168



Game Formulation

 Two-player zero-sum game in which both vendor and 
attacker want to randomize over their strategies
 Defender mixed-strategy vector
 Attacker mixed-strategy vector

 Attack at location n will be successful with probability pn

 The expected delivery time will be:

 fh(.) is a distance function
 T depends on various parameters 169



Game Formulation

 Vendor problem

 Adversary problem
 As a zero-sum game, it can be transformed into two 

linear programs that can be easily solved
 Game admits a Nash (saddle-point) equilibrium
 There may be more than one equilibrium, but they are all 

interchangeable yielding the same delivery time
 But what about the human perceptions? 170
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Expected Utility Theory

 Conventionally, the Nash equilibrium is found 
under expected utility theory (EUT) 
considerations 
 Presumes that players act rationally
 The players optimize the expected value over their mixed 

strategies, i.e.,

 Caveat: in practice, it has been empirically shown that 
when users are faced with uncertainty, they act 
irrationally
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Are humans really rational?

How to capture such irrationality?

 Example: In the 
real-world, 

security 
problems often 
involve human 
decision makers 
at both sides of 

the aisle 
(attack/defense)
 Human in 

the loop

Source: Study between Kyoto University and game theorists 
at Caltech (June 2014)
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Prospect Theory

 Lottery example
 Risk impacts

how players weigh
certain outcome

 Uncertainty can 
lead players to deviate from the rational norms of EUT

 Subjective perception on losses/gains
 In CPS and UAV, many human players are in the loop and 

will have subjective perceptions on the various 
performance and network measures

 Solution: Prospect theory!
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Example
 The preferred choice between a pair (or more) of 

uncertain alternatives is determined by:
 Value of the alternatives (as is customary) but also..
 How those choices are stated!

 Gain Scenario: You average monthly bill is now $450 a 
month. Under our new smart system your bill will now 
show a debit of $500 a month. Also, you may choose:
 A) 50% chance of a $100 credit  if you join our new 

wireless pricing system
 B) 100% chance of a credit of $50 that will keep your bill 

the same
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Example
 Loss Scenario: Your average monthly bill is now $450 a 

month. Under our new smart system your bill will now 
show a debit of $400 a month. Also, you may choose:
 C) 50% chance of a bill for $100  if you join our system
 D) 100% chance of a bill of $50 that will keep your bill the 

same
 A) and C) are identical, while B) and D) are identical
 Prospect theory found that people will always prefer B) 

to A) and C) to D)
 A certain gain is preferred to an uncertain double gain!
 An uncertain loss is preferred to a certain, smaller loss!
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Prospect Theory

 Prospect theory
 Introduced by Kahneman and Tversky (1979)
 Won them the Nobel prize in 2002
 Cognitive psychology basis for analyzing human errors 

and deviations from rational behavior

 Two important observations:
 Weighting effect: Players can subjectively weight 

outcomes that are uncertain or risky
 Framing effect: Players may evaluate their utilities as 

gains/losses with respect to a reference point
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Illustrating the Weighting Effect

 Weighting effect
 Prelec function

 Outcomes are 
weighted 

differently
 Weighting applies 

to
probabilistic 

outcomes (e.g. 
mixed strategies)



178

Prospect Theory

 With weighting, the players now optimize:

 Framing effect
 Each player will “frame” its gains/losses with 

respect to a reference point
 Losses loom larger than gains

Weighting effect, Prelec function:
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Prospect Theory

 Concave in 
gains

 Convex in 
losses

 Steeper slope 
for losses as 

opposed to gains
 Risk averse in 

gains, risk 
seeking in losses
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Prospect Theory

 Framing effects
 The following framing function has been proposed:

 Suitable applications for PT?
 When humans are making decisions (CPS with human-in-

the loop, smart grid, pricing , human hackers, security)
 UAV security is a prime example, given the impact of 

UAV performance on owners/humans



Prospect Theory in UAV

 The standard formulation does not account for the 
presence of humans in the loop that are facing 
uncertainty

 Uncertainty: perceptions of both attacker and vendor on 
the probability of successful attack (weighting effect)

 Framing: subjective perception on the delivery time 
with respect to a reference point
 Even the smallest of delays can be catastrophic 
 For rescue situations, survival is at stake
 For Amazon, reputation can be damaged
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Prospect Theory

 Subjective, PT-based utility

 The game is no longer zero-sum
 We consider max-min/min-max strategies

 Ongoing work to characterize equilibria under PT
182

Reference pointFraming function Weighting
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Simulation results (1)

Due to the weighting
effect the vendor
will still choose 

the shortest
path despite being 

very risky (pn = 0.8)
This choice

becomes more likely
as the vendor
becomes more

irrational
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Simulation results (2)

Due to the weighting
effect, the attacker

focuses more
on nodes 5 and 8

which are
part of the shortest

path
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Simulation results (3)

Delivery time is increased by almost 10%
not accounting for time to re-load and 

re-ship
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Simulation results (4)

As  the loss 
parameter increases

the vendor exaggerates
losses and thus

starts choosing more
risky paths to

meet delivery time
which, in turn,

yields to a 
reverse effect!!!
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Conclusions
 UAVs provide with many new opportunities to 

improve wireless communications
 The Internet of Flying Things will be upcoming and 

we must be “analytically” ready
 Fundamental results on performance are needed
 Self-organization in terms of resources, network 

topology, access modes, security, etc.
 Machine learning, game theory and related techniques

 Human-in-the-loop: bounded rationality
 Ubiquitous wireless connectivity from the sky!
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Finally….
Thank You
Questions?
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