Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for 5G and Beyond

Bruno Clerckx

Dept. of Electrical and Electronic Engineering
Imperial College London

IEEE International Symposium on Wireless Communication Systems,
August 2018
Contents

1. Introduction to MIMO Networks
2. Limitations of Current 4G and Emerging 5G Architecture
3. The MISO Broadcast Channel and Partial CSIT
4. Fundamentals of Rate Splitting
5. Precoder Optimization
6. Applications of Rate-Splitting
7. Rate-Splitting in 5G
8. Conclusions and Future Challenges
Introduction to MIMO Networks

1. Introduction to MIMO Networks
 - Point-to-Point MIMO
 - Multi-User MIMO
 - Massive MIMO

2. Limitations of Current 4G and Emerging 5G Architecture

3. The MISO Broadcast Channel and Partial CSIT

4. Fundamentals of Rate Splitting

5. Precoder Optimization

6. Applications of Rate-Splitting

7. Rate-Splitting in 5G

8. Conclusions and Future Challenges
Point-to-Point MIMO

- MIMO channel with M transmit and N receive antennas

- MISO ($M > 1, N = 1$), SIMO ($M = 1, N > 1$), SISO ($M = 1, N = 1$)

- Multiplexing gain
 - Also called Degrees of Freedom - DoF
 - Slope of the achievable rate vs SNR (at high SNR)
 - Number of interference-free streams transmitted in parallel
 - $R \approx g_s \log_2 (\rho)$ with $g_s \leq \min \{M, N\}$
 - Spatial Multiplexing/BLAST (no CSIT)
 - Multiple eigenmode transmission with waterfilling power allocation (CSIT)
 - DoF resilient to CSIT inaccuracy in point-to-point
Multi-User MIMO

- Most systems are multi-user!
- How to deal with K users? Benefit of MIMO in a multi-user setting?
- MIMO Broadcast Channel (BC) and Multiple Access Channel (MAC)

Differences between BC and MAC:
- Multiple independent additive noises in BC vs a single noise term in MAC.
- A single Tx power constraint in BC vs multiple Tx power constraints in MAC.
- The desired signal and the interference propagate through the same channel in the BC vs they propagate through different channels in the MAC.

We focus on Downlink settings.
Downlink Multi-User MIMO (BC)

Transmitter sends independent streams to multiple receivers.

- **SISO:**
 - Users can be ordered according to strength.
 - Superposition coding and SIC achieve capacity region.
 - DPC can be used (transmitter side interference cancellation).

- **MISO and MIMO:**
 - Users cannot be ordered.
 - SC-SIC leads to performance loss.
 - DPC necessary to achieve capacity region (in general).
Multi-Cell MIMO: Coordination and Cooperation

- Jointly allocate resources across the whole network (and not for each cell independently) and use the antennas of multiple cells to improve the received signal quality at the mobile terminal and to reduce the co-channel interferences.

- Two categories: Coordination and Cooperation

 - **Coordination**
 - No data sharing (user data is available at a single transmitter)
 - CSI sharing
 - Modelled by an Interference Channel

 - **Cooperation**
 - Data sharing (user data is available at multiple transmitters)
 - CSI sharing
 - Modelled by BC (for Downlink)
Massive MIMO

- Number of transmitting antennas at the transmitter is (massively) increased.
- Energy can be focused in very narrow beams (reduce multi-user interference).
- Simple precoder design based on matched beamforming (MRC).
- Simultaneously serve many users in the same resource block, simplified scheduling.
- With a massive number of antennas, comes a massive demand for CSIT.

Figure: Downlink beamforming is centralized Massive MIMO deployment [1].

Figure: Various centralized and distributed massive MIMO deployments [2].
Limitations of Current 4G and Emerging 5G Architecture

1. Introduction to MIMO Networks

2. Limitations of Current 4G and Emerging 5G Architecture
 - LTE-A performance and limitations: MU-MIMO, CoMP, HetNets
 - Motivation 1 for a New Physical Layer
 - Motivation 2 for a New Physical Layer

3. The MISO Broadcast Channel and Partial CSIT

4. Fundamentals of Rate Splitting

5. Precoder Optimization

6. Applications of Rate-Splitting

7. Rate-Splitting in 5G

8. Conclusions and Future Challenges
MIMO Networks: a central problem...the role of CSIT

- MIMO Networks exploit more and more channel state information at the transmitter (CSIT)

- Performance crucially rely on accurate CSIT
- CSIT impairments - plenty of sources:
 - Quantization errors.
 - Estimation errors.
 - Delays.
 - Channel acquisition at RB/Subband level.
 - Hardware impairments (phase noise, additive/multiplicative RF impairments, calibration of RF chains).
MU-MISO with linear precoding and quantized feedback: the sum-rate saturates due to multi-user interference

- MU-MISO = Full cooperation = Upper-bound for any deployment

![Graph showing sum-rate vs. SNR for different feedback methods and block sizes](image-url)
• Number of feedback bits necessary to maintain a rate loss of $\Delta \tilde{R} \leq \log_2(\delta)$ bps/Hz per user
 - i.i.d. Rayleigh fading channels: $B \approx (n_t - 1) \log_2 (P)$ [3].
 - spatially correlated Rayleigh fading channels $B \approx (r - 1) \log_2 (P)$ (r the rank of the transmit correlation matrix)[4].
Observations:

- Big loss due to imperfect CSIT.
- High CSIT accuracy is getting increasingly difficult to satisfy due to increasing number of antennas and access points in 5G (dense HetNet, Massive MIMO).
Motivation 1 for a New Physical Layer

- MU-MISO with linear precoding and quantized feedback: the sum-rate saturates due to multi-user interference.

- Big loss as the CSIT accuracy decreases.

- High CSIT accuracy has become increasingly difficult to satisfy due to increasing number of antennas and access points in 5G (dense HetNet, Massive MIMO).

- So far, techniques designed for perfect CSIT applied to imperfect CSIT scenarios.

- Imperfect CSIT hardly avoidable.

- Wiser to design wireless networks from scratch accounting for imperfect CSIT and its resulting multi-user interference?
Motivation 1 for a New Physical Layer

Information theoretic channel (e.g. MISO BC) \[\Downarrow \]
Information theoretic limits (Capacity region) \[\Downarrow \]
Communication scheme (e.g. DPC) \[\Downarrow \]
Suboptimal scheme (Linear precoding) \[\Downarrow \]
Signal processing (Precoder optimization) \[\Downarrow \]
Imperfect CSIT (Robust optimization)

For example, robust optimization of \(p_1, \ldots, p_K \) in

\[
x = \sum_{k=1}^{K} p_k s_k.
\]

BUT !!! The design is motivated by perfect CSIT to start with.
A Bottom-up Approach

Information theoretic channel (e.g. MISO BC with Imperfect CSIT)
\[\Downarrow \]
Information theoretic limits (Capacity region - unknown)
\[\Downarrow \]
Alternative information theoretic limits (DoF region)
\[\Downarrow \]
Communication scheme (Based on Rate-Splitting)
\[\Downarrow \]
Suboptimal scheme (Linear precoding)
\[\Downarrow \]
Signal processing (Precoder optimization)

For example, optimizing \(p_c, p_1, \ldots, p_K \) in

\[
x = p_c s_c + \sum_{k=1}^{K} p_k s_k
\]

where \(p_c s_c \) comes from Rate-Splitting.

Motivated by optimality in a DoF sense (multiplexing gain)
Motivation 2 for a New Physical Layer

- MIMO networks rely on two extreme interference management strategies: **fully decode interference** and **treat interference as noise**

 - NOMA based on superposition coding with successive interference cancellation relies on strong users to fully decode and cancel interference created by weaker users.

 - SDMA (MU-MIMO, CoMP, Massive MIMO, millimetre wave MIMO based on linear precoding) rely on fully treating any multi-user interference as noise.

- Rate-Splitting as a **more general** and **more powerful** transmission framework: **partially decode interference** and **partially treat interference as noise**

 - Softly bridge and therefore reconcile the two extreme strategies.

 - RS encompasses NOMA and SDMA as special cases.

$$x = p_c s_c + \sum_{k=1}^{2} p_k s_k$$

where $p_c s_c$ comes from Rate-Splitting.
Transmitter

- W_1, W_2 split into $\{W^{12}_1, W^1_1\}$ for user-1 and $\{W^{12}_2, W^2_2\}$ for user-2
- W^{12}_1, W^{12}_2 are encoded together into a common stream s_{12}
- W^1_1 and W^2_2 encoded into private stream s_1 for user-1 and s_2 for user-2
- Data streams are linear precoded $x = p_{12}s_{12} + p_1s_1 + p_2s_2$

Receiver

- Both users first decode s_{12} by treating s_1 and s_2 as noise
- Both users perform SIC and retrieve s_1 and s_2, respectively

SIC (or joint decoding) **needed** to separate common and private streams
Flavour of Rate-Splitting: A Two-User Case

SDMA (classical multi-user linear precoding)

- Simply allocate no power to s_{12} and treat multi-user interference as noise
 \[x = p_1 s_1 + p_2 s_2 \]

SC-SIC (NOMA)

- Forcing user-1 to fully decode the message of user-2
- Allocate no power to s_2, encode W_1 into s_1 and encode W_2 into s_{12}
 \[x = p_{12} s_{12} + p_1 s_1 \]
- User-1 and user-2 decode s_{12} by treating s_1 as noise and user-1 decodes s_1 after canceling s_{12}
The MISO Broadcast Channel and Partial CSIT

1. Introduction to MIMO Networks

2. Limitations of Current 4G and Emerging 5G Architecture

3. The MISO Broadcast Channel and Partial CSIT
 - System model
 - Perfect CSIT
 - Imperfect CSIT

4. Fundamentals of Rate Splitting

5. Precoder Optimization

6. Applications of Rate-Splitting

7. Rate-Splitting in 5G

8. Conclusions and Future Challenges
System model

\[y_k(t) = \mathbf{h}_k^H(t)\mathbf{x}(t) + n_k(t) \]

- \(M \) transmit antennas and \(K \) single-antenna users (\(M \geq K \)).
- Channel state (matrix): \(\mathbf{H}(t) = [\mathbf{h}_1(t), \ldots, \mathbf{h}_K(t)] \).
- In each \(t \), transmitter obtains the estimate \(\hat{\mathbf{H}}(t) \) (i.e. CSIT).
System model: Transmission and Linear precoding

Linear precoding signal model:

- Independent symbol streams: \(W_1, \ldots, W_K \mapsto s_1, \ldots, s_K \).
- \(t \) is dropped for simplicity.
- Unity average power: \(\mathbb{E}\{s_is_k^*\} = 1 \) if \(i = k \), and 0 if \(i \neq k \).
- Linear Precoding:
 \[
 x = p_1s_1 + \ldots + p_Ks_K.
 \]
- Average power constraint: \(\sum_{k=1}^{K} \|p_k\|^2 \leq P \).
- \(P_p = [p_1, \ldots, p_K] \) can be adapted based on CSIT
 \[
 P_p(\hat{H}(1)), P_p(\hat{H}(2)), \ldots, P_p(\hat{H}(T)).
 \]
System model: SINR and Rate

\[y_k = \underbrace{h_k^H p_k s_k}_{\text{desired signal}} + \underbrace{h_k^H \sum_{i \neq k} p_i s_i}_{\text{interference}} + \underbrace{n_k}_{\text{noise}} \]

- **SINR (instantaneous):** \(\text{SINR}_k = \frac{|h_k^H p_k|^2}{\sum_{i \neq k} |h_k^H p_i|^2 + \sigma_n^2} \).

- **Rate (instantaneous):** \(R_k = \log_2 (1 + \text{SINR}_k) \).

- **Ergodic Rate (for } T \gg 1): \mathbb{E}\{R_k\}.\}
Perfect CSIT

- Perfect CSIT: $\hat{H} = H$.
- Zero-Forcing (ZF) precoding:
 - $P_p = H(H^H H)^{-1} B$ where B is diagonal.
 - This yields: $p_k \in \text{null}\left([h_1, \ldots, h_{k-1}, h_{k+1}, \ldots, h_K]^H\right)$.

$$y_k = h_k^H p_k s_k + n_k$$

- Each user receives an interference-free stream.
- In other words, each user gets one full DoF.
Perfect CSIT: Degrees of Freedom (DoF)

- DoF: fraction of an interference-free stream’s capacity as $P \to \infty$.
- Considering the Ergodic rate:
 \[d_k = \lim_{P \to \infty} \frac{\mathbb{E}\{R_k\}}{\log_2(P)}. \]
- For MISO, we have $d_k \leq 1$ due to single-antenna receivers.
- Under perfect CSIT, ZF and equal power allocation achieves full DoF:
 \[\sum_{k=1}^{K} d_k = K. \]
Imperfect CSIT

What happens when CSIT is imperfect?

Imperfect CSIT model:

\[
H = \hat{H} + \tilde{H}
\]

\[
h_k = \hat{h}_k + \tilde{h}_k
\]

Estimate obtained through feedback or UL training [5].

- **CSIT error power:** \(E \left\{ \| \tilde{h}_k \|^2 \right\} = \sigma^2_{e,k} \).

- **CSIT error scaling:** \(\alpha_k = \lim_{P \to \infty} - \frac{\log(\sigma^2_{e,k})}{\log(P)} \)

- It follows that: \(E \left\{ \| \tilde{h}_k \|^2 \right\} \sim P^{-\alpha_k} \).

- **Assume:** \(\alpha_1, \ldots, \alpha_K = \alpha \).
 - \(\alpha > 0 \): CSIT improves with \(P \) (e.g. increasing number of feedback bit).
 - \(\alpha = 0 \): CSIT fixed with \(P \) (e.g. fixed number of feedback bit).
 - \(\alpha = 1 \): CSIT perfect in a DoF sense (as we see next).
Imperfect CSIT: Zero-Forcing

- ZF over the imperfect channel estimate:
 - \(P_p = \hat{H}(\hat{H}^H\hat{H})^{-1}B \).
 - This yields: \(p_k \in \text{null} \left([\hat{h}_1, \ldots, \hat{h}_{k-1}, \hat{h}_{k+1}, \ldots, \hat{h}_K]^H \right) \).

\[
\begin{align*}
\text{desired signal} & \quad \text{residual interference} \quad \text{noise} \\
y_k = h_k^H p_k s_k & + \sum_{i \neq k} \hat{h}_k^H p_i s_i & + n_k
\end{align*}
\]

- Each user cannot enjoy an interference-free stream anymore.

- What happens to the DoF?
Imperfect CSIT: DoF loss

- ZF and equal power allocation: \[||p_1||^2 = \ldots = ||p_K||^2 = \frac{P}{K}. \]

\[y_k = h_k^H p_k s_k + \tilde{h}_k^H \sum_{i \neq k} p_i s_i + n_k \]

- Assume \(\alpha \in [0, 1] \).
- \(\text{SINR}_k \sim P^{\alpha} \) from which \(\mathbb{E}\{R_k\} = \log_2(P^\alpha) + O(1) \).
- \(d_k = \alpha \) from which the sum DoF [3, 5]:

\[\sum_{k=1}^{K} d_k = K\alpha. \]
Imperfect CSIT: Interference

Perfect CSIT:

- Inter-user interference can be fully eliminated.
- Full DoF is achieved.

Partial CSIT with $\alpha \geq 1$:

- Inter-user interference can be reduced to the level of noise.
- No DoF loss.

Partial CSIT with $\alpha < 1$:

- Inter-user interference cannot be reduced to the level of noise.
- Treating interference as noise causes DoF loss.

If interference cannot be eliminated or reduced to noise level, why not decode it and remove it from the received signal (fully or in part)?

Let us first take a step back, and look at the 2-user Interference Channel (IC).
Fundamentals of Rate Splitting

1. Introduction to MIMO Networks
2. Limitations of Current 4G and Emerging 5G Architecture
3. The MISO Broadcast Channel and Partial CSIT
4. Fundamentals of Rate Splitting
 - Two-user Interference Channel
 - The MISO-BC with imperfect CSIT revisited
 - Sum-Rate enhancement and Feedback reduction
5. Precoder Optimization
6. Applications of Rate-Splitting
7. Rate-Splitting in 5G
8. Conclusions and Future Challenges
Two-User Interference Channel (IC)

- Message W_k from TX-k to RX-k.
- Encoding: $W_k \mapsto x_k$.
- Decoding: $y_k \mapsto \hat{W}_k$.

Symmetric setup:
- $|h_{11}|^2 = |h_{22}|^2 = |h_d|^2$ and $|h_{12}|^2 = |h_{21}|^2 = |h_c|^2$
- $P_1 = P_2 = P$ and $\sigma_1^2 = \sigma_2^2 = \sigma^2$

$$y_k = h_{k1}x_1 + h_{k2}x_2 + n_k$$
Two-User IC: Very weak interference

Very weak interference $|h_c|^2 \ll |h_d|^2$:

- Interference is so weak, it may be **treated as noise**.
- E.g. RX-1 decodes x_1 while treating x_2 as noise.
- $R_k \leq \log_2 \left(1 + \frac{P|h_d|^2}{\sigma^2 + P|h_c|^2}\right)$.
Strong interference $|h_c|^2 > |h_d|^2$:

- Interfering signal is stronger than desired signal, may as well **decode** it.
- E.g. **RX-1** decodes both x_2 and x_1 (MAC).

\[
R_k \leq \log_2 \left(1 + \frac{P|h_d|^2}{\sigma^2} \right)
\]

\[
R_1 + R_2 \leq \log_2 \left(1 + \frac{P|h_d|^2 + P|h_c|^2}{\sigma^2} \right) \text{ (comes from cross-decoding)}
\]
Two-User IC: Rate-Splitting

Weak interference $|h_c|^2 < |h_d|^2$ (or general case):

- Not strong enough to **decode**, or weak enough to **treat as noise**.
- **Rate-Splitting**: part **decoded** by other and part **treated as noise**.
 - Split messages: $W_k \mapsto W_k^0, W_k^1 \mapsto x_k^0, x_k^1$.
 - Split power: $P_k \mapsto P_k^0, P_k^1$.
 - RX-1 decodes x_{20} and x_1 (composed of x_{10}, x_{11}).
 - RX-2 decodes x_{10} and x_2 (composed of x_{20}, x_{21}).

- Reduces to **treat as noise** when $P_{10} = P_{20} = 0$.
 - i.e. $|W_{10}| = |W_{20}| = 0$.
 - $W_k \mapsto x_{k1}$.

- Reduces to **decode** interference when $P_{11} = P_{21} = 0$.
 - i.e. $|W_{11}| = |W_{21}| = 0$.
 - $W_k \mapsto x_{k0}$.

- **Bridges** the two in general [6].
Rate-Splitting for MISO-BC\cite{7}:

- The general idea is to split messages.
- One part decoded by all, while the other treated as noise.

But!

- In what proportion are messages split?
- How much power to allocate?
- How to transmit each part?

Strategy:

- Private messages:
 - Parts which are treated as noise.
 - Received at the level of noise

- Common message(s):
 - Parts which are decoded by all.
 - Transmitted in a public manner.
Interference reduction through power control:

- Reduce allocated power to P^α.
- Note that $P^\alpha \leq P$ for $\alpha \in [0, 1]$.
- Equal power allocation: $\|p_1\|^2 = \ldots = \|p_K\|^2 = \frac{P^\alpha}{K}$.

\[y_k = \left(h_k^H p_k s_k \right) + \left(\tilde{h}_k^H \sum_{i \neq k} p_i s_i \right) + n_k \]

- Interference is reduced to noise level $\sim P^0$.
- This also limits desired power $\sim P^\alpha$.
- DoF is maintained: $d_k = \alpha$ and $\sum_{k=1}^{K} d_k = K \alpha$.
- Only power levels (scalings) from 0 to α are occupied.
- The remaining power levels (α to 1) are freed for the other parts.
Superpose $W_c \mapsto s_c$ (with precoder p_c) to be decoded by all users.

$$x = p_c s_c + \sum_{k=1}^{K} p_k s_k$$

where $\|p_c\|^2 = P - P^\alpha \sim P$ and $\|p_1\|^2 = \ldots = \|p_K\|^2 = \frac{P^\alpha}{K} \sim P^\alpha$.

$$y_k = h_k^H p_c s_c + h_k^H p_k s_k + \tilde{h}_k^H \sum_{i\neq k} p_i s_i + n_k$$

- SINR$_{c,k} \sim P^{1-\alpha}$ from which $\mathbb{E}\{R_{c,k}\} = \log_2(P^{1-\alpha}) + O(1)$.
- DoF of common message: $d_c = 1 - \alpha$.
- SIC is used to remove s_c, as it is decoded by all.
- DoF of private messages is maintained: $d_k = \alpha$.
- Sum DoF is boosted: $d_c + \sum_{k=1}^{K} d_k = (1 - \alpha) + K\alpha$ [14].

What remains is to load both parts (private and common) with user data.
Instead of a new common message, s_c is loaded with part of user messages.

- Split message of user-1: $W_1 \mapsto W_{10}, W_{11}$.
- Common part: $W_{10} \mapsto s_c$, decoded by all users but intended to users-1.
- Private part: $W_{11} \mapsto s_1$ decoded by user-1.
- $W_2, \ldots, W_K \mapsto s_2, \ldots, s_K$ decoded by corresponding users.

Splitting can be done for other (or all) users as in figure [28].
MISO-BC: Weighted sum interpretation

Decomposed into a weighted superposition of two networks [22]

- Perfect CSIT.
 - Achieves sum DoF of K.
 - Weighted by α.

- No CSIT
 - Achieves sum DoF of 1.
 - Weighted by $1 - \alpha$.
MISO-BC: DoF with RS

Proposition

In the K user MISO-BC with partial CSIT, sum DoF achieved by ZF is given by

$$d_{\Sigma}^{ZF} = K \alpha$$

while the sum DoF achieved by RS-ZF is given by

$$d_{\Sigma}^{RS} = 1 + (K - 1) \alpha.$$

Optimality of RS to achieve the entire DoF region of the K-user MISO BC shown in [31]. Converse based on [8].
MISO-BC: Two-User DoF region

- Assume splitting for user-1
 - user-1 DoF: \(d_c + d_1 = (1 - \alpha) + \alpha = 1 \).
 - user-2 DoF: \(d_2 = \alpha \).
- Time-sharing between splitting for user-1 and user-2.
- Compared to time-sharing between ZF and TDMA.
Sum-Rate enhancement and Feedback reduction

From DoF to rate analysis [9]:

- So far we have looked at the DoF gains of RS ($P \rightarrow \infty$).

- Sum-rate enhancement (slope gain and/or SNR gain) over ZF, TDMA, switching between TDMA/ZF (SU/MU)[9].

- $M = 4$ antennas, $K = 2$ users, and $B = 15$ bits.
Precoder Optimization

1. Introduction to MIMO Networks
2. Limitations of Current 4G and Emerging 5G Architecture
3. The MISO Broadcast Channel and Partial CSIT
4. Fundamentals of Rate Splitting
5. Precoder Optimization
 - Ergodic Sum-Rate Maximization
 - Robust Max-Min Fairness
6. Applications of Rate-Splitting
7. Rate-Splitting in 5G
8. Conclusions and Future Challenges
Precoder Optimization

Recall that the RS (linearly precoded) signal model is:

\[\mathbf{x} = \mathbf{p}_c \mathbf{s}_c + \sum_{k=1}^{K} \mathbf{p}_k \mathbf{s}_k \]

- Precoding matrix: \(\mathbf{P} = [\mathbf{p}_c, \mathbf{p}_1, \ldots, \mathbf{p}_K] \).
- Power constraint: \(\text{tr}(\mathbf{P}\mathbf{P}^H) \leq P \).
- So far we considered simple barely optimized designs (ZF, random).
- The choice of \(\mathbf{P} \) influences \(R_c, R_1, \ldots, R_K \).

Challenges

- Transmitter only knows \(\hat{\mathbf{H}} \) and not \(\mathbf{H} \).
- Instantaneous \(R_c, R_1, \ldots, R_K \) not known by the transmitter.
- Transmission should be carried out at reliable (decodable) rates.
RS problem [14]: design precoder for given \hat{H} to maximize ASR

$$R_{RS}(P) : \begin{cases} \max_{\tilde{R}_c, P} & \tilde{R}_c + \sum_{k=1}^{K} \tilde{R}_k \\ \text{s.t.} & \tilde{R}_{c,k} \geq \tilde{R}_c, \ \forall k \in K \\ & \text{tr}(PP^H) \leq P \end{cases}$$

with $\tilde{R}_{c,k} = \mathbb{E}_{H|\hat{H}}\left\{ R_{c,k} | \hat{H} \right\}$ and $\tilde{R}_k = \mathbb{E}_{H|\hat{H}}\left\{ R_k | \hat{H} \right\}$, as opposed to the conventional (NoRS) formulation

$$R(P) : \begin{cases} \max_{P_p} & \sum_{k=1}^{K} \tilde{R}_k \\ \text{s.t.} & \text{tr}(P_pP_p^H) \leq P \end{cases}$$

• Stochastic optimization problem (due to expectations inside the ARs).
• Even a deterministic version is non-convex and very difficult.
• WMMSE approach can efficiently handle sum rate problems.
More generally, we can solve the Weighted ESR problem [14].

Shows the ER trade-offs between the two users.
Robust Max-Min Fairness

Non-Ergodic transmission over $T = 1$ random state $\{\mathbf{H}, \hat{\mathbf{H}}\}$.

- For kth user, CSIT errors bounded by sphere with radius δ_k:

 $$\mathcal{H}_k = \left\{ \mathbf{h}_k \mid \mathbf{h}_k = \hat{\mathbf{h}}_k + \tilde{\mathbf{h}}_k, \|\tilde{\mathbf{h}}_k\| \leq \delta_k \right\}$$

- For any \mathbf{P}, worst-case rates defined as:

 $$\bar{R}_{c,k} = \min_{\mathbf{h}_k \in \mathcal{H}_k} R_{c,k}(\mathbf{h}_k) \quad \text{and} \quad \bar{R}_k = \min_{\mathbf{h}_k \in \mathcal{H}_k} R_k(\mathbf{h}_k).$$

- For given $\hat{\mathbf{H}}$, transmission at worst-case rates is reliable (robust).

Rate-Splitting revisited [15]: Sharing the common message

- $W_k \leftrightarrow W_{k0}, W_{k1}$ for all $k \in \{1, \ldots, K\}$.
- $W_{10}, \ldots, W_{K0} \leftrightarrow s_c$.
- $W_{11}, \ldots, W_{K1} \leftrightarrow s_1, \ldots, s_K$.
Robust Max-Min Fairness

\[\mathcal{R}_{RS}(P) : \begin{cases} \max \bar{c}, P \\ \min_{k \in \mathcal{K}} \left(\bar{R}_k + \bar{C}_k \right) \\ \text{s.t.} \\ \bar{R}_{c,k} \geq \sum_{i=1}^{K} \bar{C}_i, \forall k \in \mathcal{K} \\ \bar{C}_k \geq 0, \forall k \in \mathcal{K} \\ \text{tr}(PP^H) \leq P. \end{cases} \]

where \(\bar{c} = [\bar{C}_1, \ldots, \bar{C}_M] \).

- Portion of the common message rate given to user \(k \): \(\bar{C}_k \).
- Sum of all portions: \(\sum_{k=1}^{K} \bar{C}_k = \bar{R}_c = \min_i \bar{R}_{c,i} \).
- Rate of user \(k \): \(\bar{R}_k + \bar{C}_k \) (private and common portions).

Classical (NoRS) problem formulated as:

\[\mathcal{R}(P) : \begin{cases} \max_{P_p} \min_{k \in \mathcal{K}} \bar{R}_k \\ \text{s.t.} \\ \text{tr}(P_p P_p^H) \leq P. \end{cases} \]
Robust Max-Min Fairness: Simulation results

Figure: $K = M = 3$ and $\delta_1, \delta_2, \delta_3 = 0.1$.

- NoRS saturates due to non-scaling CSIT errors.
- RS avoids saturation and performs better across all SNRs [15].
Extensions of Rate-Splitting

1. Introduction to MIMO Networks
2. Limitations of Current 4G and Emerging 5G Architecture
3. The MISO Broadcast Channel and Partial CSIT
4. Fundamentals of Rate Splitting
5. Precoder Optimization
6. Applications of Rate-Splitting
 - Massive MISO
 - Multi-Cell Coordination
 - Overloaded systems
 - Multigroup multicast beamforming
 - Multiuser Millimeter Wave Beamforming
 - RF Impairments
 - RSMA: Generalizing SDMA and NOMA
 - Unicast and Multicast Transmission
Massive MIMO challenge: the huge demand for accurate CSIT.

The use of Rate-Splitting[13]:

- The constraint: $R_c = \min_k \{R_{c,k}\}$.
- This highly reduces the gain when K is large.
- Channel statistics R_k can be further exploited.
- Large training and feedback overhead.

User grouping based on spatial correlation:

- Two-tier precoding [18, 19, 20]

$$x = \sqrt{\frac{P}{K}} \sum_{g=1}^{G} B_g W_g s_g,$$

- Users in g-th group share the same channel statistics: R_g.
- B_g: outer-precoding matrix based on channel statistics.
- W_g: inner-precoding matrix designed based on short-term effective channel estimates: $\widehat{H}_g = B_g^H \widehat{H}_g$.
Massive MISO: Hierarchical Rate-Splitting (HRS)

- Overlap between the eigen-subspaces \Rightarrow inter-group interference.
- Imperfect CSIT \Rightarrow intra-group interference.

- **Hierarchical Rate-Splitting** \([13]\): a hierarchy of common messages to combat the inter-group and intra-group interference in Massive MIMO

$$
\mathbf{x} = \sqrt{P_{sc}} \mathbf{w}_{sc} s_{sc} + \sum_{g=1}^{G} \mathbf{B}_g \left(\sqrt{P_{cg}} \mathbf{w}_{cg} s_{cg} + \sqrt{P_{gk}} \mathbf{W}_g s_g \right)
$$

- System common msg. decoded by all users: for inter-group interference.
- Group common msg. decoded by group: for intra-group interference
Massive MISO: Simulation results

- HRS under imperfect CSIT, $M = 100$, $K = 12$, $\tau^2 = 0.4$

- HRS behaves as two-tier BC at low to medium SNR.
- HRS achieves a non-saturating sum rate.
- HRS decreases the complexity of precoder design and scheduling.
- HRS increases the complexity of the encoders and decoders.
Massive MISO: Simulation results

- $M = 100$, $K = 12$, $\tau^2 = 0.4$, $SNR = 30dB$, disjoint eigen-subspaces
Multi-Cell Coordination: Topological Rate-Splitting (TRS)

(c) two-cell scenario [21]

(d) three-cell scenario [22]

(e) CSIT pattern

(f) Weighted-sum interpretation [22]
Overloaded systems

- Overloaded scenarios: $K > M$.
- Scheduling over orthogonal resource blocks (time/frequency).
- Serve at most M users at a time.
- Reduces to conventional MISO BC in each block.
- With perfect CSIT, achieves DoF M in each block.

Consider a scenario where some user have little or no CSIT:
- IoT with many devices.
- Low-power sensor-like receivers.
- Can be served using the common message in the RS scheme [23].
Overloaded systems: Three-User example

- System: $M = 2$ antennas and $K = 3$ users.
- CSIT: $\alpha_1 = \alpha_2 = \alpha$ and $\alpha_3 = 0$.

Scheduling approach

Power partitioning
- A superposition of non-orthogonal layers and an orthogonal layer
- Power partitioning achieves the optimum DoF region [23]
• sum rate of RX-1 and RX-2 while maintaining the same rate for RX-3.
• Long-term SNR for RX-3 is 10 dB and 20 dB lower.
• Parameters: quality $\alpha = 0.5$, resource allocation $b = 0.5$.
Multigroup multicast beamforming

Users clustered into groups depending on content demand.

- K users grouped into $\mathcal{G}_1, \ldots, \mathcal{G}_G$.
- One message for each group: W_1, \ldots, W_G.
- Classical beamforming:

$$x = \sum_{g=1}^{G} p_g s_g.$$

Achieving max-min fairness (perfect CSIT):

$$\mathcal{R}(P) : \begin{cases} \max_{P_p} \min_{g \in \{1, \ldots, G\}} \min_{i \in \mathcal{G}_g} R_i \\ \text{s.t.} \quad \sum_{g=1}^{G} \| p_g \|^2 \leq P. \end{cases}$$

- Overloaded scenarios: M is not enough for interference nulling [17].
- Rate saturation (even with perfect CSIT) due to inter-group interference.
Multigroup multicast beamforming: Simulation results

![Graph 1](snr_rate_m6.png)
**Figure: **\(K = 6\) users, \(G = 3\) groups, \(|G_1| = 1, |G_2| = 2\) and \(|G_3| = 3\).

![Graph 2](snr_rate_m4.png)
**Figure: **\(M = 4\) antennas, \(|G_g| = 2\) users per group, \(G = 3\) and \(4\).

RS to mitigate inter-group interference in overloaded scenarios [16, 17].
Multiuser Millimeter Wave Beamforming

Signalling and feedback procedure [29]

Classical

OSF + Stat

TSF + Adp CB

transmission slot

channel statistics

beam search and feedback

quantization and feedback of effective channel

RF chain

W: digital precoder

K

N

F: analog precoder

M

mmWave channels

DM-RS

DM-RS

CSI-RS

Data

DM-RS

CSI-RS

Beam search

Beam search

Beamformed

Data

Data

Data
RS to save second-stage channel training and feedback [29].

Figure: No-RS with extra feedback versus RS. $M = 32$, $K = 4$, $B_{RF} = 4$.

- No-RS: OSF + Stat
- No-RS: TSF + Adp CB
- No-RS: TSF + RVQ
- RS: OSF + Stat
- RS: TSF + Adp CB

SNR [dB] vs. Sum Rate [bps/Hz] for different B_{BB} values.
RF Impairments

RS to mitigate phase noise impairments [30].
Space-Division Multiple Access (SDMA): multiplex users in spatial domain using Multi-User Linear Precoding (MULP)

- MU-MIMO, CoMP, network MIMO, mmw MIMO and Massive MIMO

Pros:

1. Reap all spatial multiplexing (DoF) benefits of a MISO BC with perfect CSIT
2. Low precoder and receiver complexity

Cons:

1. Suited to underloaded regime, not overloaded regime
2. Suited to semi-orthogonal users with similar channel strengths, not general settings
3. DoF optimal with perfect CSIT, not with imperfect CSIT
Non-Orthogonal Multiple Access (NOMA): multiplex users in power (and spatial) domain using (linearly precoded) Superposition Coding with SIC (SC-SIC)

Pros:
1. Cope with an overloaded regime with diversity of user channel strengths

Cons:
1. SC-SIC motivated by a SISO BC. DoF loss in MISO BC.
2. Suited to aligned users with diverse channel strengths, not general settings
3. Complexity at both the transmitter (opt. of precoders, groups and decoding orders) and the receivers (multi-layer SIC)
4. DoF loss in imperfect CSIT
RSMA: Generalizing SDMA and NOMA

Two extreme interference management strategies: fully treat interference as noise and fully decode interference

SDMA: **fully treat** any residual multi-user interference as noise

NOMA: some users **fully decode and cancel interference** created by other users

Analogy with the two-user Gaussian SISO IC
Rate-Splitting Multiple Access (RSMA)

Multiplex users in **spatial and power domains** using **linearly precoded Rate-Splitting (RS)** with **SIC**

Decode **part** of the interference and treat the remaining **part** as noise

- Bridge the extremes
- General and powerful multiple access framework

Pros:

1. Encompass SDMA and NOMA as special cases
2. RSMA rate ≥ SDMA and NOMA rates
3. Optimal from a DoF perspective in both perfect and imperfect CSIT
4. Cope with any user deployments (diversity of channel strengths and directions), CSIT inaccuracy and network load
5. Lower computational complexity than NOMA for both the transmit scheduler and the receivers

Cons:

1. Higher encoding complexity than SDMA and NOMA
RSMA: Two-User Example

Transmitter
- \(W_1, W_2\) split into \(\{W_{12}, W_1\}\) for user-1 and \(\{W_{12}, W_2\}\) for user-2
- \(W_{12}, W_{12}\) are encoded together into a common stream \(s_{12}\)
- \(W_1, W_2\) encoded into private stream \(s_1\) for user-1 and \(s_2\) for user-2
- Data streams are linear precoded \(x = p_{12}s_{12} + p_1s_1 + p_2s_2\)

Receiver
- Both users first decode \(s_{12}\) by treating \(s_1\) and \(s_2\) as noise
- Both users perform SIC and retrieve \(s_1\) and \(s_2\), respectively

SIC (or joint decoding) needed to separate common and private streams
SDMA and NOMA: subsets of RSMA

SDMA based on MU-LP
- Simply allocate no power to \(s_{12} \) and treat multi-user interference as noise
 \[x = p_1 s_1 + p_2 s_2 \]

NOMA based on SC-SIC
- Forcing user-1 to fully decode the message of user-2
- Allocate no power to \(s_2 \), encode \(W_1 \) into \(s_1 \) and encode \(W_2 \) into \(s_{12} \)
 \[x = p_{12} s_{12} + p_1 s_1 \]
- User-1 and user-2 decode \(s_{12} \) by treating \(s_1 \) as noise and user-1 decodes \(s_1 \) after canceling \(s_{12} \)
- NOMA more restrictive with \(p_{12} = p_1 \)
RSMA: Three-User Example

General RS framework for 3-user

- W_1^1 encode s_1 multiply by p_1 decode \hat{s}_{123}
- W_2^2 encode s_2 multiply by p_2 decode \hat{s}_{12}
- W_3^3 encode s_3 multiply by p_3 decode \hat{s}_{13}
- W_{12}^1 encode s_{12} multiply by p_{12} decode \hat{s}_1
- W_{13}^1 encode s_{13} multiply by p_{13}
- W_{23}^2 encode s_{23} multiply by p_{23}
- W_{123}^1 encode s_{123} multiply by p_{123}

SDMA and NOMA again subsets of RSMA Framework extendable to K-user
Low-Complexity RSMA

Adjust the number of SIC layers and common messages

1-layer RS \((\mathcal{K} = \{1, \ldots, K\}) \)

\[
\mathbf{x} = \mathbf{Ps} = p_{\mathcal{K}}s_{\mathcal{K}} + \sum_{k \in \mathcal{K}} p_k s_k
\]

- Only one SIC required at each receiver
- No user ordering/grouping at the transmitter
- MU-LP subset of 1-layer RS
- SC-SIC not a subset of 1-layer RS (for \(K > 2 \))
Low-Complexity RSMA

2-layer Hierarchical RS (HRS)

\[x = Ps = p_K s_K + \sum_{g \in G} p_{K_g} s_{K_g} + \sum_{k \in \mathcal{K}} p_k s_k \]

- Two layers of SIC required at each receiver
- User grouping but no user ordering at the transmitter
- MU-LP subset of 1-layer HRS
- SC-SIC not necessarily subset of 1-layer RS
$$R_{RS3}(u, \pi) = \arg\max_{P, c} \sum_{k=1}^{3} u_k R_{k, tot}$$

s.t. \[C_1^{123} + C_2^{123} + C_3^{123} \leq R_{123} \]
\[C_1^{12} + C_2^{12} \leq R_{12} \]
\[C_1^{13} + C_3^{13} \leq R_{13} \]
\[C_2^{23} + C_3^{23} \leq R_{23} \]
\[\text{tr}(PP^H) \leq P_t \]
\[R_{k, tot} \geq R_{k}^{th}, k \in \{1, 2, 3\} \]
\[c \geq 0 \]
SDMA vs NOMA vs RSMA

<table>
<thead>
<tr>
<th>Multiple Access</th>
<th>NOMA</th>
<th>SDMA</th>
<th>RSMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy</td>
<td>SC–SIC</td>
<td>SC–SIC per group</td>
<td>MU–LP</td>
</tr>
<tr>
<td>Design Principle</td>
<td>Fully decode interference</td>
<td>Fully decode interference in each group and treat interference between groups as noise</td>
<td>Fully treat interference as noise</td>
</tr>
<tr>
<td>Decoder architecture</td>
<td>SIC at receivers</td>
<td>SIC at receivers</td>
<td>Treat interference as noise</td>
</tr>
<tr>
<td>User Deployment Scenario</td>
<td>Users experience aligned channel directions and a large disparity in channel strengths.</td>
<td>Users in each group experience aligned channel directions and a large disparity in channel strengths. Users in different groups experience orthogonal channels.</td>
<td>Users channels are (semi-) orthogonal with similar channel strengths.</td>
</tr>
<tr>
<td>Network load</td>
<td>More suited to overloaded network</td>
<td>More suited to overloaded network</td>
<td>More suited to underloaded network</td>
</tr>
</tbody>
</table>
Complexity SDMA vs NOMA vs RSMA

<table>
<thead>
<tr>
<th>Multiple Access</th>
<th>NOMA</th>
<th>SDMA</th>
<th>RS</th>
<th>1-layer RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy</td>
<td>SC–SIC</td>
<td>SC–SIC per group</td>
<td>MU–LP</td>
<td>encode K private streams plus additional common streams</td>
</tr>
<tr>
<td>Encoder complexity</td>
<td>encode K streams</td>
<td>encode K streams</td>
<td>encode K streams</td>
<td>Simpler user scheduling as RS copes with any user deployment scenario, does not rely on user grouping and user ordering.</td>
</tr>
<tr>
<td>Scheduler complexity</td>
<td>Very complex as it requires to find aligned users and decide upon suitable user ordering.</td>
<td>Very complex as it requires to divide users into orthogonal groups, with aligned users in each group and decide upon suitable user ordering in each group.</td>
<td>Complex as MU–LP requires to pair together semi-orthogonal users with similar channel gains.</td>
<td>Simpler user scheduling as RS copes with any user deployment scenario, does not rely on user grouping and user ordering.</td>
</tr>
<tr>
<td>Receiver complexity</td>
<td>Requires multiple layers of SIC. Subject to error propagation.</td>
<td>Requires multiple layers of SIC in each group and a single layer of SIC if groups are made of 2 users. Subject to error propagation.</td>
<td>Does not require any SIC.</td>
<td>Requires multiple layers of SIC. Subject to error propagation.</td>
</tr>
</tbody>
</table>
Numerical Results

Compare SDMA, NOMA and RSMA

Effect of user channel alignment/orthogonality θ and channel strength disparity γ

$$h_1 = [1, 1, 1, 1]^H,$$

$$h_2 = \gamma \times [1, e^{j\theta}, e^{j2\theta}, e^{j3\theta}]^H$$

Effect of load: underloaded ($K \leq N_t$) and overloaded ($K > N_t$) regime

Effect of CSIT inaccuracy
Numerical Results: $K = 2$, $N_t = 4$, Perfect CSIT

Figure: Achievable rate region of different strategies when $\gamma = 1$, SNR=20 dB.
Numerical Results: $K = 2$, $N_t = 4$, Perfect CSIT

Figure: Achievable rate region with different strategies when $\gamma = 0.3$, $N_t = 4$, SNR=20 dB.
Numerical Results: $K = 2$, $N_t = 4$, Imperfect CSIT

Figure: Achievable rate region of different strategies when $\gamma = 1$, $N_t = 4$, SNR=20 dB.
Numerical Results: $K = 2$, $N_t = 4$, Imperfect CSIT

Figure: Achievable rate region with different strategies when $\gamma = 0.3$, $N_t = 4$, SNR=20 dB.
Numerical Results: $K = 3$, $N_t = 2$, Perfect CSIT

Figure: Weighted sum rate versus SNR comparison of different strategies for overloaded three-user deployment with perfect CSIT, $\gamma_1 = 1$, $\gamma_2 = 0.3$, $u_1 = 0.4$, $u_2 = 0.3$, $u_3 = 0.3$, $N_t = 2$, $r_{th} = \{0.02, 0.08, 0.19, 0.3, 0.4, 0.4, 0.4\}$.
Numerical Results: $K = 3$, $N_t = 1$, Perfect CSIT

Figure: Weighted sum rate versus SNR comparison of different strategies for overloaded three-user deployment with perfect CSIT, $\sigma_1^2 = 1$, $\sigma_2^2 = 0.3$, $\sigma_3^2 = 0.1$, $N_t = 1$, $r_{th} = [0, 0, 0.01, 0.03, 0.1, 0.2, 0.3]$
Numerical Results: $K = 4$, $N_t = 2$, Perfect CSIT

Figure: Sum rate versus SNR comparison of different strategies for overloaded four-user deployment with perfect CSIT, $\gamma_1 = 0.3$, $\theta_2 = \theta_1 + \frac{\pi}{9}$.
Numerical Results: $K = 10$, $N_t = 2$, Perfect CSIT

Figure: Weighted sum rate versus SNR comparison of different strategies for overloaded ten-user deployment with perfect CSIT, $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_{10}^2 = 1$, $N_t = 2$, SNR=30 dB, $r_{th} = [0.01, 0.03, 0.05, 0.1, 0.1, 0.1, 0.1]$
Numerical Results: $K = 10$, $N_t = 2$, Perfect CSIT

<table>
<thead>
<tr>
<th>Users</th>
<th>Individual Rate (bit/s/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-layer RS</td>
</tr>
<tr>
<td>2</td>
<td>SC-SIC</td>
</tr>
<tr>
<td>3</td>
<td>MU-LP</td>
</tr>
<tr>
<td>4</td>
<td>multicast</td>
</tr>
<tr>
<td>5</td>
<td>1-layer RS</td>
</tr>
<tr>
<td>6</td>
<td>SC-SIC</td>
</tr>
<tr>
<td>7</td>
<td>MU-LP</td>
</tr>
<tr>
<td>8</td>
<td>multicast</td>
</tr>
<tr>
<td>9</td>
<td>1-layer RS</td>
</tr>
<tr>
<td>10</td>
<td>SC-SIC</td>
</tr>
</tbody>
</table>

Figure: Individual rate comparison of different strategies for overloaded ten-user deployment with perfect CSIT for 1 randomly generated channel estimate, SNR=30 dB, $N_t = 2$, $r_{th} = [0.01, 0.03, 0.05, 0.1, 0.1, 0.1, 0.1]$.

DoF and rate gains with only **1 SIC layer** vs NOMA that requires **9 SIC layers**!

Partially decode interference and partially treat interference as noise: enhanced throughput and QoS, increased robustness and lower complexity.
New multiple access called **Rate-Splitting Multiple Access** (RSMA)

SDMA and NOMA subject to many limitations: high system complexity and a lack of robustness to user deployments, network load and CSIT inaccuracy

General multiple access framework based on rate-splitting (RS)

Partially decode interference and **partially** treat interference as noise

1-layer RS: low scheduler and receiver complexity and good performance in any user deployments, CSIT inaccuracy and network load

RSMA has the **potential to change** the design of the PHY and MAC layers of **next generation communication systems** by unifying existing approaches and relying on a **superposed transmission of common and private messages**
Unicast and Multicast Transmission

Unicast: one-to-one

Multicast: one-to-many

Non-orthogonal unicast and multicast: superimposed in the power domain

Efficient bandwidth and transmit power utilization/allocation

Interference between multicast and unicast and among the unicast messages

Applications:
- B5G: scarcity of radio resources and heterogeneity of applications
- Layered Division Multiplexing (LDM) in digital television systems
- ...
Unicast and Multicast Transmission

N_t antennas serving K single-antenna users

Transmitter
- multicast message W_0 intended for all users
- K unicast messages W_1, \ldots, W_K intended for different users
- W_0, W_1, \ldots, W_K independently encoded into data streams s_0, s_1, \ldots, s_K
- Streams are precoded by p_0, p_1, \ldots, p_K

$$x = Ps = p_0s_0 + \sum_{k \in K} p_k s_k$$

Receiver

$$y_k = h_k^H x + n_k$$

- Decode multicast stream by treating unicast streams as interference
- Perform SIC and decode its intended unicast stream

SIC needed to separate multicast and unicast
Rate-Splitting for Unicast and Multicast Transmission [35]

SIC used for a dual purpose
- Separate the unicast and multicast streams (as before)
- Better manage interference among unicast streams

Rate-Splitting (RS) needed at the transmitter
- W_k split into common part $W_{k,c}$ and private part $W_{k,p}, \forall k$
- $W_{1,c}, \ldots, W_{K,c}$ encoded along with W_0 into super-common stream s_0
- s_0 includes multicast message and parts of the unicast messages
- $W_{1,p}, \ldots, W_{K,p}$ independently encoded into private streams s_1, \ldots, s_K
Optimization

Conventional (MU-LP)

\[
R_{MU-LP}(u) = \max_P \sum_{k \in \mathcal{K}} u_k R_k \\
\text{s.t. } R_{k,0} \geq R_{0}^{th}, \forall k \in \mathcal{K} \\
\text{tr}(PP^H) \leq P_t
\]

Rate-Splitting (RS)

\[
R_{RS}(u) = \max_{P,c} \sum_{k \in \mathcal{K}} u_k R_{k,tot} \\
\text{s.t. } C_0 + \sum_{k \in \mathcal{K}} C_{k,0} \leq R_{k,0}, \forall k \in \mathcal{K} \\
C_0 \geq R_{0}^{th} \\
C_{k,0} \geq 0, \forall k \in \mathcal{K} \\
\text{tr}(PP^H) \leq P_t
\]
Numerical Results for Two Users

Figure: Achievable rate region comparison of different strategies in perfect CSIT, $\gamma = 1$, $R_0^{th} = 0.5$ bit/s/Hz
Numerical Results for Two Users

Figure: Achievable rate region comparison of different strategies in perfect CSIT, $\gamma = 1$, $R_0^{th} = 1.5$ bit/s/Hz
Numerical Results for Two Users

\[R_{1,\text{tot}} \text{ (bit/s/Hz)} \]

\[R_{2,\text{tot}} \text{ (bit/s/Hz)} \]

\(\theta = \frac{\pi}{9} \)
\(\theta = \frac{2\pi}{9} \)
\(\theta = \frac{\pi}{3} \)
\(\theta = \frac{4\pi}{9} \)

Figure: Achievable rate region comparison of different strategies in perfect CSIT, \(\gamma = 0.3, \ R_0^{th} = 0.5 \text{ bit/s/Hz} \)
RS efficiently exploits existing SIC receiver architecture.

SIC used for dual purpose of separating unicast and multicast streams and better manage the multi-user interference between the unicast streams.

RS outperforms existing Multi-User Linear-Precoding (MULP) and power-domain Non-Orthogonal Multiple Access (NOMA) in a wide range of user deployments (with a diversity of channel directions and channel strengths).

RS provides rate and QoS enhancements at no extra cost for the receivers.
Rate-Splitting in 5G

1. Introduction to MIMO Networks
2. Limitations of Current 4G and Emerging 5G Architecture
3. The MISO Broadcast Channel and Partial CSIT
4. Fundamentals of Rate Splitting
5. Precoder Optimization
6. Applications of Rate-Splitting
7. Rate-Splitting in 5G
 - Standardization Issues
 - From LTE Rel. 13/14 to RS
8. Conclusions and Future Challenges
Standardization Issues

- (H/T)RS is a generalized strategy
 - Conventional SU/MU-MIMO and CoMP as special cases.
 - New SU/MU/RS mode switching in 5G depending on the SNR and the CSIT quality.

- New transmission mode indicator (DCI format)
 - Inform the Tx mode and the relevant information required for demodulation

- New signaling from BS to UEs
 - Number and type of messages (common/private)
 - Modulation and coding scheme of all common/private message
 - Information about whether common message is intended for the user or not
 - Transmit power of each message.

- CSI feedback mechanisms and signaling
 - Knowledge about the CSIT accuracy to allocate power to the common and private messages, e.g. computed by a UE and reported back to the BS.
 - Scheduling and Tx strategy decided based on CSIT accuracies from all users in all subbands.
 - CSI reporting on PUCCH and PUSCH.
 - Some CSIT patterns lead to a higher DoF than others [25].
From LTE Rel. 13/14 to RS

- **NAICS in Rel-12**
 - Network-Assisted Interference Cancellation and Suppression.
 - Providing knowledge about interfering transmissions at the receivers.
 - Allows the use of more advanced receivers (joint decoding, SIC).

- **Downlink Multiuser Superposition Transmission (MUST)**
 - Study item approved (3GPP).
 - Non-Orthogonal Multiple Access (NOMA).
 - Uses superposition coding at the transmitter.
 - Relies on SIC at the receivers.
 - Metric of interest: sum-rate, fairness, delays etc.

The machinery required for RS is already being studied, discussed and developed.

- RS schemes can utilize such developments (or the other way around!).
- RS can fit in nicely.
- RS complements other schemes, and vice versa.
| 1 | Introduction to MIMO Networks |
| 2 | Limitations of Current 4G and Emerging 5G Architecture |
| 3 | The MISO Broadcast Channel and Partial CSIT |
| 4 | Fundamentals of Rate Splitting |
| 5 | Precoder Optimization |
| 6 | Applications of Rate-Splitting |
| 7 | Rate-Splitting in 5G |
| 8 | Conclusions and Future Challenges |
Conclusions and Future Challenges

- 4G and current 5G candidates (MU-MIMO, CoMP, Massive MIMO, millimetre wave MIMO) rely on private message transmissions
 - Treat interference as noise
 - Such a strategy is only motivated in the presence of perfect CSIT
 - Apply techniques designed for perfect CSIT to imperfect CSIT

- NOMA forces strong users to fully decode and cancel interference created by weaker users:
 - Works only for degraded channels (SISO BC or MISO BC with aligned channels)

- RS partially decodes interference and partially treats interference as noise
 - Superposed transmission of common and private messages
 - Motivated by information theory for the realistic scenario of imperfect CSIT
 - A more general and powerful transmission framework
 - Benefits: unified framework, spectral/energy efficiencies, reliability, CSI feedback overhead reduction

- RS leads to fundamental changes in the design of PHY and Lower MAC
 - A gold mine of research problems for academia and industry

- The standardization of rate-splitting can leverage 3GPP current study/work items
Future Challenges: A gold mine of research problems

Introduction
- Overview, open problems, impact on standard specifications and operational challenges [28].

Fundamental Limits
- DoF region for K-user MISO BC with imperfect CSIT [8, 31].
- Capacity region of K-user MISO BC with imperfect CSIT: DPC + RS?
- DoF region for MIMO BC with imperfect CSIT [10, 11, 12].
- DoF region of overloaded MISO BC with imperfect CSIT [23].
- DoF region for MISO IC with imperfect CSIT [22]. TRS?
- DoF region for MIMO IC with imperfect CSIT [11]. RS + IA?
- Interplay between RS and coded caching [24, 33].

Optimization
- Ergodic sum-rate maximization for BC [14].
- Robust Max-Min Fairness for BC [15].
- RS beamforming optimization for other types of channels.

PHY challenges
- Finite SNR rate analysis [9].
- Energy efficiency of RS-based transmission [37].
- Space-time/frequency RS [26, 27, 9].
- RS with multi-carrier transmissions.
Future Challenges

PHY challenges (continued)

- RS with non-linear precoding [38].
- Diversity (and BER) performance of RS-based strategies.
- RS for Multigroup Multicast [16, 17].
- RS/HRS for Massive MIMO [13].
- RS as a way to combat pilot contamination.
- RS to mitigate hardware impairments [30].
- RS in higher frequency bands operation (e.g. millimeter-wave) [29].
- RS-based network MIMO [36].
- Coordination/cooperation among distributed antennas in homogeneous and heterogeneous network deployments.
- RS in half-duplex relay.
- RS in full duplex.
- RS in overloaded systems [23].
- RS and NOMA/MUST [34].
- RS and superposition of multicast and unicast messages [35].
- RS and physical layer security.
- RS in D2D and cognitive radio [32].
Future Challenges

PHY/MAC challenges
- User pairing and scheduling of common and private messages.
- RS design with Quality of Experience (QoE) and traffic constraints.

Performance Analysis
- Performance analysis of RS using stochastic geometry.

Standardization
- Link and system-level evaluations of RS.
- MIMO receiver implementation.
- Transmission schemes/mode.
- CSI feedback mechanisms.
- Downlink and uplink signaling.
References

References III

See also recent special sessions on RS at IEEE SPAWC 2018 and IEEE ISWCS 2018.